CNN中减少网络的参数的三个思想:

1) 局部连接(Local Connectivity)

2) 权值共享(Shared Weights)

3) 池化(Pooling)

局部连接

  局部连接是相对于全连接来说的。全连接示意图如下:

  比如说,输入图像为1000*1000大小,即输入层有1000*1000=10^6维,若隐含层与输入层的数目一样,也有10^6个,则输入层到隐含层的全连接参数个数为10^6 * 10^6=10^12,数目非常之大,基本很难训练。

  一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。

在上右图中,假如每个神经元只和10*10个像素值相连,那么权值数据为10^6*100=10^8个参数(在有padding=same,stride=1,即输出输出尺寸相同,相邻两个卷积核距离1个像素的情况下计算得到),减少为原来的千分之一。而那10*10个像素值对应的10*10个参数,其实就相当于卷积操作。

  注:感受野(receptive field),其大小等同于卷积核的大小(比如说5×5)。

权值共享

  通过局部连接处理后,神经元之间的连接个数已经有所减少。可是实际上并没有减少很多,参数数量还是很大。而权值共享就是来解决这个问题的,它能显著降低参数的数量。该如何理解权值共享呢?首先从生物学意义上来看,相邻神经元的活性相似,从而它们可以共享相同的连接权值。其次单从数据特征上来看,我们可以把每个卷积核当作一种特征提取方式,而这种方式与图像等数据的位置无关。这就意味着,对于同一个卷积核,它在一个区域提取到的特征,也能适用于于其他区域。

  在上面的局部连接中,每个神经元都对应100个参数,一共10^6个神经元,如果这10^6个神经元的100个参数都是相等的,那么参数数目就变为100了。由此可见,权值共享可以大大减少网络的参数。

  注:上面说明均是在一个卷积核的情况下。

池化

  池化一般分为max pooling和average pooling。我们定义池化窗口的大小为sizeX,即下图中红色正方形的边长,定义两个相邻池化窗口的水平位移/竖直位移为stride。一般池化由于每一池化窗口都是不重复的,所以sizeX=stride。最大池化为取窗口中最大的那个值,平均池化为取窗口中所有数的平均值。

如上图所示,为最大池化,其中sizeX=stride=2。

经过池化层之后,模型参数会减少很多。

附:

摘自:https://zhuanlan.zhihu.com/p/25005808

  CNN最成功的应用是在CV,那为什么NLP和Speech的很多问题也可以用CNN解出来?为什么AlphaGo里也用了CNN?这几个不相关的问题的相似性在哪里?CNN通过什么手段抓住了这个共性?

以上几个不相关问题的相关性在于,都存在局部与整体的关系,由低层次的特征经过组合,组成高层次的特征,并且得到不同特征之间的空间相关性。如下图:低层次的直线/曲线等特征,组合成为不同的形状,最后得到汽车的表示。

  CNN抓住此共性的手段主要有四个:局部连接/权值共享/池化操作/多层次结构。

  局部连接使网络可以提取数据的局部特征;权值共享大大降低了网络的训练难度,一个Filter只提取一个特征,在整个图片(或者语音/文本) 中进行卷积;池化操作与多层次结构一起,实现了数据的降维,将低层次的局部特征组合成为较高层次的特征,从而对整个图片进行表示。如下图:

  上图中,如果每一个点的处理使用相同的Filter,则为全卷积,如果使用不同的Filter,则为Local-Conv。

参考文献:

https://yq.aliyun.com/articles/161164

http://www.cnblogs.com/zf-blog/p/6075286.html

一文读懂卷积神经网络CNN

CNN中减少网络的参数的三个思想的更多相关文章

  1. MXNet/Gluon 中网络和参数的存取方式

    https://blog.csdn.net/caroline_wendy/article/details/80494120 Gluon是MXNet的高层封装,网络设计简单易用,与Keras类似.随着深 ...

  2. HALCON初步:算子参数部分三个冒号的意义

    HALCON中存在两类基本变量:图像变量(iconic data)和控制变量(control data),其中图像变量包括image, region和XLD contours,控制变量包括intege ...

  3. 从 python 中 axis 参数直觉解释 到 CNN 中 BatchNorm 的工作方式(Keras代码示意)

    1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, ...

  4. 由浅入深:CNN中卷积层与转置卷积层的关系

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...

  5. CNN中的局部连接(Sparse Connectivity)和权值共享

    局部连接与权值共享 下图是一个很经典的图示,左边是全连接,右边是局部连接. 对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 ...

  6. Neutron VxLAN + Linux Bridge 环境中的网络 MTU

    1. 基础知识 1.1 MTU   一个网络接口的 MTU 是它一次所能传输的最大数据块的大小.任何超过MTU的数据块都会在传输前分成小的传输单元.MTU 有两个测量层次:网络层和链路层.比如,网络层 ...

  7. CNN中的卷积核及TensorFlow中卷积的各种实现

    声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...

  8. CNN中的经典结构之AlexNet

    AlexNet的基本结构 Alexnet是由5个卷积层和三个全连接层组成,一共8个权重层(池化层不是权重层因为其没有参数),其中ReLU激活函数作用在每个卷积层和全连接层上,在第一个卷积层和第二个卷积 ...

  9. CNN中,1X1卷积核到底有什么作用呢?

    CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这 ...

随机推荐

  1. 简单使用git和github来管理代码----配置与使用

    在以前没听说过github之前,自己写的代码很容易丢或者遗失,等到用时才知码到用时方恨丢,现在用了github,真的是替自己生省不少的事,闲话不多说,上教程. 1 在github上注册账号 https ...

  2. java基础学习系列二

    循环语句 1,for(){} 2,while(){} 3,do{}while() continue和break用法 break是结束循环 continue结束本次循环

  3. 【JS】 Javascript 入门

    javascript **********本章大量示例和内容引用自w3cschool的javascript教程************** 本来已经快写完90%左右了,结果不小心跑了个js,不小心把浏 ...

  4. cisco交换机实现端口聚合

    0x00前言: 今天听老师讲端口聚合,为了方便日后复习故此有 了本篇随笔. 0x01准备工具: cisco模拟器 0x02:目录 为什么要用端口聚合? 广播风暴? 扩展:SMTP 0x03正文: 为什 ...

  5. java各种概念 Core Java总结

    Base: OOA是什么?OOD是什么?OOP是什么?{ oo(object-oriented):基于对象概念,以对象为中心,以类和继承为构造机制,来认识,理解,刻画客观世界和设计,构建相应的软件系统 ...

  6. Eclipse中的所有快捷键列表

    Eclipse中的所有快捷键列表: Ctrl+1 快速修复(最经典的快捷键,就不用多说了) Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加) Ctrl+Alt+↑ 复制 ...

  7. 关于BufferedReader的readLine方法遇到的坑

    今天偶然用到BufferedReader,在读取文本后输出数据的时候遇到了隔行输出的问题. 如: 床前明月光 疑是地上霜 123456 789789 输出的为:疑是地上霜789789 找了一下,最终找 ...

  8. HA集群heartbeat配置--Nginx

    HA即(high available)高可用,又被叫做双机热备,用于关键性业务.简单理解就是,两台机器A和B,正常是A提供服务,B待命限制,当A宕机或服务宕掉,会切换至B机器继续提供服务.常用实现高可 ...

  9. 实现Windows数据绑定

    dataSet数据集   dataset驻留于内存临时存储数据简单的理解为一个临时数据库将数据源的数据保存在内存中独立于任何数据库创建dataset对象引入命名空间:system.Datadatase ...

  10. js通过a链接控制多个DIV只显示其中一个其它隐藏

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...