版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com

前面通过数据增强,ResNet-34残差网络识别CIFAR10,准确率达到了92.6。

这里对训练过程增加2个处理:

  1、训练数据集做进一步处理:对图片随机加正方形马赛克。

  2、每50个epoch,学习率降低0.1倍。

代码具体修改如下:

自定义transform:

 class Cutout(object):
def __init__(self, hole_size):
# 正方形马赛克的边长,像素为单位
self.hole_size = hole_size def __call__(self, img):
return cutout(img, self.hole_size) def cutout(img, hole_size):
y = np.random.randint(32)
x = np.random.randint(32) half_size = hole_size // 2 x1 = np.clip(x - half_size, 0, 32)
x2 = np.clip(x + half_size, 0, 32)
y1 = np.clip(y - half_size, 0, 32)
y2 = np.clip(y + half_size, 0, 32) imgnp = np.array(img) imgnp[y1:y2, x1:x2] = 0
img = Image.fromarray(imgnp.astype('uint8')).convert('RGB')
return img

数据集处理修改:

     transform_train = transforms.Compose([
# 对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪成32*32
transforms.RandomCrop(32, padding=4), # 随机马赛克,大小为6*6
Cutout(6), # 按0.5的概率水平翻转图片
transforms.RandomHorizontalFlip(), transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) transform_test = tv.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) # 定义数据集
train_data = tv.datasets.CIFAR10(root=ROOT, train=True, download=True, transform=transform_train)
test_data = tv.datasets.CIFAR10(root=ROOT, train=False, download=False, transform=transform_test)

训练过程中调整学习率:

     for epoch in range(1, args.epochs + 1):
if epoch % 50 == 0:
lr = args.lr * (0.1 ** (epoch // 50)) for params in optimizer.param_groups:
params['lr'] = lr net_train(net, train_load, optimizer, epoch, args.log_interval) # 每个epoch结束后用测试集检查识别准确度
net_test(net, test_load, epoch)

运行结果如下:

Files already downloaded and verified

ResNet34(

(first): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(2): ReLU(inplace)

(3): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)

)

(layer1): Sequential(

(0): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(1): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer2): Sequential(

(0): ResBlock(

(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(3): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer3): Sequential(

(0): ResBlock(

(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(3): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(4): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(5): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer4): Sequential(

(0): ResBlock(

(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(avg_pool): AvgPool2d(kernel_size=4, stride=4, padding=0)

(fc): Linear(in_features=512, out_features=10, bias=True)

)

one epoch spend: 0:01:11.775634

EPOCH:1, ACC:44.28

one epoch spend:
0:01:12.244757

EPOCH:2, ACC:54.46

one epoch spend:
0:01:12.360205

EPOCH:3, ACC:56.84

............

one epoch spend: 0:01:19.172188

EPOCH:198, ACC:94.2

one epoch spend:
0:01:19.213334

EPOCH:199, ACC:94.19

one epoch spend:
0:01:19.222612

EPOCH:200, ACC:94.21

CIFAR10 pytorch
ResNet34 Train: EPOCH:200, BATCH_SZ:128, LR:0.1, ACC:94.33

train spend time:
4:21:32.548834

运行200个迭代,每个迭代耗时80秒,准确率提升了1.73%,达到94.33%。准确率变化曲线如下:

pytorch识别CIFAR10:训练ResNet-34(自定义transform,动态调整学习率,准确率提升到94.33%)的更多相关文章

  1. pytorch识别CIFAR10:训练ResNet-34(准确率80%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com CNN的层数越多,能够提取到的特征越丰富,但是简单地增加卷积层数,训练时会导致梯度弥散或梯度爆炸. 何 ...

  2. pytorch识别CIFAR10:训练ResNet-34(数据增强,准确率提升到92.6%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过减小卷积核训练准确率提升到85%. 这里对训练数据集做数据 ...

  3. pytorch识别CIFAR10:训练ResNet-34(微调网络,准确率提升到85%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过训练准确率只达到80%. 这里对网络做点小修改,在最开始的 ...

  4. pytorch 动态调整学习率 重点

    深度炼丹如同炖排骨一般,需要先大火全局加热,紧接着中火炖出营养,最后转小火收汁.本文给出炼丹中的 “火候控制器”-- 学习率的几种调节方法,框架基于 pytorch 1. 自定义根据 epoch 改变 ...

  5. 深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(二)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFA ...

  6. 深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的, ...

  7. PyTorch Tutorials 4 训练一个分类器

    %matplotlib inline 训练一个分类器 上一讲中已经看到如何去定义一个神经网络,计算损失值和更新网络的权重. 你现在可能在想下一步. 关于数据? 一般情况下处理图像.文本.音频和视频数据 ...

  8. Pytorch多GPU训练

    Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batc ...

  9. CNN+BLSTM+CTC的验证码识别从训练到部署

    项目地址:https://github.com/kerlomz/captcha_trainer 1. 前言 本项目适用于Python3.6,GPU>=NVIDIA GTX1050Ti,原mast ...

随机推荐

  1. Docker 删除&清理镜像

    文章首发自个人网站:https://www.exception.site/docker/docker-delete-image 本文中,您将学习 Docker 如何删除及清理镜像? 一.通过标签删除镜 ...

  2. [Maven]Maven构建可执行的jar包(包含依赖jar包)

    ----------------------------------------------------------------- 原创博文,如需转载请注明出处! 博主:疲惫的豆豆 链接:http:/ ...

  3. centos安装rabbitmq

    RabbitMQ是流行的开源消息队列系统,是AMQP(Advanced Message Queuing Protocol高级消息队列协议)的标准实现,用erlang语言开发.RabbitMQ据说具有良 ...

  4. springboot~hazelcast缓存中间件

    缓存来了 在dotnet平台有自己的缓存框架,在java springboot里当然了集成了很多,而且缓存的中间件也可以进行多种选择,向redis, hazelcast都是分布式的缓存中间件,今天主要 ...

  5. DSAPI 截取被遮挡的窗口图像

    Me.BackgroundImage=DSAPI.控件.截取窗体或控件图像(目标窗口句柄) 支持截取被覆盖或隐藏的窗口.

  6. Java HashMap 使用了未经检查或不安全的操作

    今天在做接口测试的时候使用了Java中的Map(java 所知胜少,因项目需要提供示例),不扯犊子了,我们直接看一个代码文件名:Test.java: import java.util.ArrayLis ...

  7. SpringBoot2 application.properties方式加载配置文件

    application.properties jdbc.driverClassName=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://127.0.0.1:33 ...

  8. log4j日志框架的使用

    java.util.logging.Logger——java 中提供的日志类 实际开发 90% 都是使用 log4j 记录日志,而 Log4j 底层就是 java.util.logging.Logge ...

  9. 原生 table css实现操作按钮固定右侧及底部滚动 IE不会卡死

    需求的表格比较复杂(各种合并新增删除),elementUi的table组件无法满足需求,故而写了原生table,且与其他用了table组件的表格保持一致. 贴一下简单的代码,只实现操作按钮固定右侧以及 ...

  10. 从APP跳转到微信指定联系人聊天页面功能的实现与采坑之旅

    起因: 最近做的APP中有一个新功能:已知用户微信号,可点击直接跳转到当前用户微信聊天窗口页面. 当时第一想法是使用无障碍来做,并且觉得应该不难,只是逻辑有点复杂.没想到最终踩了好多坑,特地把踩过的坑 ...