来自FallDream的博客,未经允许,请勿转载,谢谢。


quailty和tangjz正在玩一个关于线段的游戏。在平面上有n条线段,编号依次为1到n。其中第i条线段的两端点坐标分别为(0,i)和(1,p_i),其中p_1,p_2,...,p_n构成了1到n的一个排列。quailty先手,他可以选择一些互不相交的线段,将它们拿走,当然他也可以一条线段也不选。然后tangjz必须拿走所有剩下的线段,若有两条线段相交,那么他就输了,否则他就赢了。注意若quailty拿走了全部线段,那么tangjz也会胜利。quailty深深喜欢着tangjz,所以他不希望tangjz输掉游戏,请计算他有多少种选择线段的方式,使得tangjz可以赢得游戏。
n<=100000
 
这道题挺有意思的233
如果把线段只要有相交的就成一个块,可以得到很多块。答案应该是2^块的个数次方。
特判无解,也就是如果有三条或者更多的线段互相交织,那么显然无解。只需要对每个块做一次,维护当前右端点最大值,和当前最右的那条线段相交的右端点的最大值即可判定。
网上好像有一些看起来比较靠谱的做法 但是我这个扫一遍就行了,复杂度O(n)  
轻松rank1
#include<iostream>
#include<cstdio>
#define getchar() (S==T&&(T=(S=B)+fread(B,1,1<<15,stdin),S==T)?0:(*S++))
char B[<<],*S=B,*T=B;
#define mod 998244353
using namespace std;
inline int read()
{
int x = ; char ch = getchar();
while(ch < '' || ch > '') ch = getchar();
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x;
} int ans=,n,a[],pre=;
bool flag=; inline int pow(int x,int k)
{
int sum=;
for(;k;k>>=,x=1LL*x*x%mod)
if(k&) sum=1LL*sum*x%mod;
return sum;
} inline void Solve(int l,int r)
{
int mx=,Mx=;
for(register int i=l;i<=r&&!flag;++i)
{
if(a[i]<mx&&a[i]<Mx) flag=;
if(a[i]>mx) mx=a[i],Mx=;
else if(a[i]>Mx) Mx=a[i];
}
} int main()
{
n=read();
for(register int i=,Mx=;i<=n&&!flag;Mx=max(Mx,a[i++]))
if((a[i]=read())==i&&Mx<i) Solve(pre+,i-),ans+=+(pre!=i-),pre=i;
Solve(pre+,n);if(pre!=n) ++ans;
printf("%d\n",flag?:pow(,ans));
return ;
}

[bzoj4881][Lydsy2017年5月月赛]线段游戏的更多相关文章

  1. BZOJ 4881: [Lydsy2017年5月月赛]线段游戏

    4881: [Lydsy2017年5月月赛]线段游戏 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 164  Solved: 81[Submit][St ...

  2. 【bzoj4881】[Lydsy2017年5月月赛]线段游戏 树状数组+STL-set

    题目描述 quailty和tangjz正在玩一个关于线段的游戏.在平面上有n条线段,编号依次为1到n.其中第i条线段的两端点坐标分别为(0,i)和(1,p_i),其中p_1,p_2,...,p_n构成 ...

  3. BZOJ4881: [Lydsy1705月赛]线段游戏(二分图)

    4881: [Lydsy1705月赛]线段游戏 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 359  Solved: 205[Submit][Stat ...

  4. [补档][Lydsy2017年4月月赛]抵制克苏恩

    [Lydsy2017年4月月赛]抵制克苏恩 题目 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平. 如果你不玩炉石传说,不必担心,小Q同学会告诉你所有相关的细节.炉石传说是这样的一 ...

  5. 【BZOJ 4832 】 4832: [Lydsy2017年4月月赛]抵制克苏恩 (期望DP)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 87 Descripti ...

  6. 【BZOJ4832】[Lydsy2017年4月月赛]抵制克苏恩 概率与期望

    [BZOJ4832][Lydsy2017年4月月赛]抵制克苏恩 Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉 ...

  7. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  8. bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT

    4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MB Description 定义二元运算 opt 满足   现在给定一 ...

  9. 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法

    [BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...

随机推荐

  1. 关于collectionView和tableView的两种cell的出列方法的区别

    相信好多人一定会对collectionView和tableView的两种cell出列方法有所疑问,下面以UICollection为例子进行举例说明 假设我们已经创建了一个collectionView, ...

  2. Fluent Interface(流式接口)

    我最初接触这个概念是读自<<模式-工程化实现及扩展>>,另外有Martin fowler大师 所写http://martinfowler.com/bliki/FluentInt ...

  3. Ubuntu的软件管理与安装

    感谢燕十八,的Linux的基础进阶视频 来哥:应该是装的wineQQ,它用的12年的国际版,ubuntu的这个版本应该比较好用! [3]apt-get 用Linux apt-get命令的第一步就是引入 ...

  4. http客户端请求及服务端详解

    http客户端请求及服务端详解 引言 HTTP 是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和 扩展. ...

  5. Oracle闪回技术

    (一)闪回技术概要 闪回技术是数据库备份与恢复的重要补充手段,主要包括以下7种特性: 特性 原理 数据库支持 闪回查询(Flashback Query) 利用undo表空间中的回退信息,查询过去某个时 ...

  6. Linux背景知识(1)RedHat和Centos

    Redhat有收费的商业版和免费的开源版,商业版的业内称之为RHEL(Red Hat Enterprise Linux)系列, 而这个CentOS(Community ENTerprise Opera ...

  7. 模板引擎Jade详解

    有用的符号: | 竖杠后的字符会被原样输出 · 点表示下一级的所有字符都会被原样输出,不再被识别.(就是|的升级版,实现批量) include 表示引用外部文件 短杠说明后面跟着的字符只是一段代码(与 ...

  8. 在Debian或Ubuntu中安装和使用'搜狗输入法for linux'

    下载搜狗输入法 for linux点击 搜狗输入法 for linux 以下载安装包到本地 安装搜狗输入法 for linuxA.准备工作: (1) 连接网络.挂载系统安装盘 此安装过程需要网络连接, ...

  9. NetCore2.0技术文章目录

    记录NetCore2.0的学习和工作,理解对与错不重要,重要的是,我飘~~~过 ------------------------------------------------------------ ...

  10. Python无法导入Cython的.pyx文件

    在import 相应包之前, 添加: import pyximport pyximport.install() 即可.