3048: [Usaco2013 Jan]Cow Lineup

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 225  Solved: 159
[Submit][Status][Discuss]

Description

Farmer John's N cows (1 <= N <= 100,000) are lined up in a row. Each cow is identified by an integer "breed ID" in the range 0...1,000,000,000; the breed ID of the ith cow in the lineup is B(i). Multiple cows can share the same breed ID. FJ thinks that his line of cows will look much more impressive if there is a large contiguous block of cows that all have the same breed ID. In order to create such a block, FJ chooses up to K breed IDs and removes from his lineup all the cows having those IDs. Please help FJ figure out the length of the largest consecutive block of cows with the same breed ID that he can create by doing this.

给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿,现在给你一个k,表示你最多可以删去k类数。数列中相同的数字被称为一类数。设该数列中满足所有的数字相等的连续子序列被叫做完美序列,你的任务就是通过删数使得该数列中的最长完美序列尽量长。

Input

* Line 1: Two space-separated integers: N and K. 
* Lines 2..1+N: Line i+1 contains the breed ID B(i).

Output

* Line 1: The largest size of a contiguous block of cows with identical breed IDs that FJ can create.

Sample Input

9 1
2
7
3
7
7
3
7
5
7

INPUT DETAILS: There are 9 cows in the lineup, with breed IDs 2, 7, 3, 7, 7, 3, 7, 5, 7. FJ would like to remove up to 1 breed ID from this lineup.

Sample Output

4

OUTPUT DETAILS: By removing all cows with breed ID 3, the lineup reduces to 2, 7, 7, 7, 7, 5, 7. In this new lineup, there is a contiguous block of 4 cows with the same breed ID (7).

HINT

样例解释:
  长度为9的数列,最多只能删去1类数。
  不删,最长完美序列长度为2.
  删去一类数3,序列变成2 7 7 7 7 5 7,最长完美序列长度为4.因此答案为4.

Source

Gold

尺取法
记录区间内每个元素出现次数和颜色种数
当种数<=k+1时r++,当种数>k+1时l++

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define N 100005
using namespace std;
int n,m,ans,num,a[N],b[N],cnt[N];
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b++n);
int len=unique(b+,b++n)-b-;
for(int i=;i<=n;i++)
a[i]=lower_bound(b+,b++len,a[i])-b;
int l=,r=;cnt[a[]]++;num++;
while(r<n){
while(r<n&&num<=m+){
if(!cnt[a[++r]])num++;
cnt[a[r]]++;
ans=max(ans,cnt[a[r]]);
}
while(num>m+&&l<=r)
if(!(--cnt[a[l++]]))num--;
}
printf("%d\n",ans);
return ;
}

bzoj3048[Usaco2013 Jan]Cow Lineup 尺取法的更多相关文章

  1. [bzoj3048] [Usaco2013 Jan]Cow Lineup

    一开始一脸懵逼.. 后来才想到维护一左一右俩指针l和r..表示[l,r]这段内不同种类的数字<=k+1种. 显然最左的.合法的l随着r的增加而不减. 顺便离散化,记一下各个种类数字出现的次数就可 ...

  2. bzoj 3048[Usaco2013 Jan]Cow Lineup 思想,乱搞 stl

    3048: [Usaco2013 Jan]Cow Lineup Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 237  Solved: 168[Subm ...

  3. BZOJ_3048_[Usaco2013 Jan]Cow Lineup _双指针

    BZOJ_3048_[Usaco2013 Jan]Cow Lineup _双指针 Description Farmer John's N cows (1 <= N <= 100,000) ...

  4. [bzoj 3048] [Usaco2013 Jan]Cow Lineup

    [bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...

  5. 【USACO11NOV】牛的阵容Cow Lineup 尺取法+哈希

    题目描述 Farmer John has hired a professional photographer to take a picture of some of his cows. Since ...

  6. BZOJ 3048: [Usaco2013 Jan]Cow Lineup 双指针

    看到这道题的第一个想法是二分+主席树(好暴力啊) 实际上不用这么麻烦,用一个双指针+桶扫一遍就行了 ~ code: #include <bits/stdc++.h> #define N 1 ...

  7. USACO 2011 November Cow Lineup /// map set 尺取法 oj25279

    题目大意: 输入n 接下来n行描述n头牛的编号num和品种id 得到包含所有id的最短段 输出最短段的编号差 Sample Input 625 726 115 122 320 130 1 Sample ...

  8. [USACO13JAN] Cow Lineup (单调队列,尺取法)

    题目链接 Solution 尺取法板子,算是复习一波. 题中说最多删除 \(k\) 种,那么其实就是找一个颜色种类最多为 \(k+1\) 的区间; 统计一下其中最多的颜色出现次数. 然后直接尺取法,然 ...

  9. BZOJ1636: [Usaco2007 Jan]Balanced Lineup

    1636: [Usaco2007 Jan]Balanced Lineup Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 476  Solved: 345[ ...

随机推荐

  1. 虚拟机Vmware成功安装Ubuntu Server 16.04中文版

    最近想在Linux下学习Python的爬虫开发技术,经过认真考虑优先选择在在Ubuntu环境下进行学习Python的开发,虽然Ubuntu Server 16.04 LTS版本已经集成了Python ...

  2. VMware虚拟机,从厚置备改成精简置备,并减小硬盘的实际占用空间

    工作中由于前期规划不足,导致磁盘空间分配较大,而且是厚置备.后期不再需要时,无法把用不到的空间释放出来,造成空间浪费.经过摸索和实验验证,总结出来一套方法. 风险提示:这个方法在我的环境中验证通过了, ...

  3. Python内置函数(35)——next

    英文文档: next(iterator[, default]) Retrieve the next item from the iterator by calling its __next__() m ...

  4. [UWP] Custom Capability的使用

    Custom Capability 是uwp开发中普通开发者较为不常用的内容,但是在一些OEM和驱动厂商,使用频率比较高 Custom Capability 有两种用户: 1.普通应用程序开发者: 2 ...

  5. apigw鉴权分析(1-2)腾讯开放平台 - 鉴权分析

    一.访问入口 http://wiki.open.qq.com/wiki/%E8%85%BE%E8%AE%AF%E5%BC%80%E6%94%BE%E5%B9%B3%E5%8F%B0%E7%AC%AC% ...

  6. 配置Android开发环境遇到的问题

    1.给Eclipse设置android的SDK位置时,出现这个:This Android SDK requires Andr...ate ADT to the latest 一个升级ADT到指定版本或 ...

  7. linux下多线程互斥量实现生产者--消费者问题和哲学家就餐问题

    生产者消费者问题,又有界缓冲区问题.两个进程共享一个一个公共的固定大小的缓冲区.其中一个是生产者,将信息放入缓冲区,另一个是消费者,从缓冲区中取信息. 问题的关键在于缓冲区已满,而此时生产者还想往其中 ...

  8. Struts2笔记分享(一)

    Struts2概述1.简介Struts就是在Model2的基础上实现的一个MVC框架,它只有一个中心控制器,采用XML定制的转向的URL,采用Action来处理逻辑.2.Struts2的MVC模式MV ...

  9. MariaDB表表达式(2):CTE

    本文目录: 1.非递归CTE 2.递归CTE 2.1 语法 2.2 递归CTE示例(1) 2.3 递归CTE示例(2) 2.4 递归CTE示例(3) 公用表表达式(Common Table Expre ...

  10. [LeetCode] Minimum Window Subsequence 最小窗口序列

    Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequence of ...