51 nod 1406 与查询
1406 与查询
有n个整数。输出他之中和x相与之后结果为x的有多少个。x从0到1,000,000
第一行输入一个整数n。(1<=n<=1,000,000).
第二行有n个整数a[0],a[1],a[2],...a[n-1],以空格分开.(0<=a[i]<=1,000,000)
对于每一组数据,输出1000001行,第i行对应和i相与结果是i的有多少个数字。
3
2 3 3
3
2
3
2
0
0
……
后面还有很多0
/*
51 nod 1406 与查询 problem:
有n个整数。输出他之中和x相与之后结果为x的有多少个。x从0到1000000 solve:
如果x与a[i]相与之后为x,那么x必定是a[i]二进制中1的组合.
所以就成了快速求x中1的所有组合. 最开始是枚举x,然后从高位到低位枚举. cnt[i - (1 << j)] += cnt[i];
但是有的时候会出现重复,比如: 1011.
循环置换一下就好了 hhh-2016/09/09-16:19:21
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <stdio.h>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfs(a) scanf("%s",a)
#define scanfl(a) scanf("%I64d",&a)
#define scanfd(a) scanf("%lf",&a)
#define key_val ch[ch[root][1]][0]
#define eps 1e-7
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
const ll mod = 1000000007;
const int maxn = 1001000;
const double PI = acos(-1.0);
const int limit = 33; template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} int cnt[maxn]; int main()
{
int n,Max,x;
clr(cnt,0);
read(n);
Max = 0;
for(int i = 1; i <=n; i++)
{
read(x),Max = max(x,Max);
cnt[x] ++ ;
}
int begi = min(1000001,Max);
// cnt[0] = n;
for(int j = 20; j >= 0 ; j --)
{
for(int i = 1; i <= begi; i++)
{
if(i & (1 << j))
{
cnt[i - (1 << j)] += cnt[i];
}
}
}
cnt[0] = n;
for(int i = 0;i <= 1000000;i ++)
print(cnt[i]);
// for(int i = 0; i <= 10; i ++)
// print(cnt[i]);
return 0;
}
51 nod 1406 与查询的更多相关文章
- 51 NOD 1406 and query
我们知道一个数S会对所有它的子集S'产生1的贡献,但是我们直接枚举子集是 3^(log2 1000000)的,会炸掉:如果直接把每个有1的位变成0往下推也会凉掉,因为这样会有很多重复的. 但是我们发现 ...
- 51 nod 1439 互质对(Moblus容斥)
1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...
- 51 nod 1427 文明 (并查集 + 树的直径)
1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游 ...
- 51 nod 1188 最大公约数之和 V2
1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...
- 51 nod 1495 中国好区间
1495 中国好区间 基准时间限制:0.7 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是& ...
- 51 nod 1055 最长等差数列(dp)
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 ...
- 51 nod 1421 最大MOD值
1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以 ...
- 51 nod 1681 公共祖先 (主席树+dfs序)
1681 公共祖先 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个庞大的家族,共n人.已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边). 在另 ...
- 51 nod 1766 树上的最远点对(线段树+lca)
1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...
随机推荐
- C语言-最后一次作业
1.当初你是如何做出选择计算机专业的决定的? 经过一个学期,你的看法改变了么,为什么? 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 我当初选择计算机专业是因为我是真的很向往计算机这方 ...
- 1013团队Beta冲刺day2
项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...
- 【iOS】swift-通过JS获取webView的高度
let webHeightStr = webView.stringByEvaluatingJavaScriptFromString("document.body.scrollHeight& ...
- DML数据操作语言之谓词,case表达式
谓词:就是返回值是真值的函数. 前面接触到的“>” “<” “=”等称为比较运算符,它们的正式名称就是比较谓词.因为它们比较之后返回的结果是真值. 由于谓词 返回的结果是一个真值 ,即tr ...
- [JCIP笔记] (三)如何设计一个线程安全的对象
在当我们谈论线程安全时,我们在谈论什么中,我们讨论了怎样通过Java的synchronize机制去避免几个线程同时访问一个变量时发生问题.忧国忧民的Brian Goetz大神在多年的开发过程中,也悟到 ...
- js判断操作系统windows,ios,android(笔记)
使用JS判断用户使用的系统是利用浏览器的userAgent. navigator.userAgent:userAgent 获取了浏览器用于 HTTP 请求的用户代理头的值. navigator.pla ...
- Clover3(可以让Windows Explorer像浏览器一样有标签页)
这不是广告!!! 下载地址:http://cn.ejie.me/ 效果图:
- 第五章 JavaScript对象及初识面向对象
第五章 JavaScript对象及初识面向对象 一.对象 在JavaScript中,所有事物都是对象,如字符串.数值.数组.函数等. 在JavaScript对象分为内置对象和自定义对象,要处理一些 ...
- Step by Step 真正从零开始,TensorFlow详细安装入门图文教程!帮你完成那个最难的从0到1
摘要: Step by Step 真正从零开始,TensorFlow详细安装入门图文教程!帮你完成那个最难的从0到1 安装遇到问题请文末留言. 悦动智能公众号:aibbtcom AI这个概念好像突然就 ...
- Linux CentOS7.0 (03)安装验证 docker
一.安装docker 1.升级 Linux 的软件包和内核 sudo yum update 2.安装 docker (1) sudo yum install docker (2).验证docker安 ...