跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。

奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。

FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。

她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。

输入输出格式

输入格式:

  • Line 1: Three space separated integers: N, M, and K

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

  • Lines N+2..N+M+1: Line j+N+1 contains three space separated

integers: A_j, B_j, and L_j

  • Lines N+M+2..N+M+K+1: Line i+N+M+1 specifies query i using two space-separated integers: s_i and t_i

输出格式:

  • Lines 1..K: Line i contains a single integer which is the lowest cost of any route from s_i to t_i

输入输出样例

输入样例#1:

5 7 2
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3
输出样例#1:

8
9

这道题询问数很多,对于每个询问依次求一遍最短路肯定不行,就算能O(M)求也显然不行,
我们注意到点数N很小,由此想到floyd算法。
但是floyd算法看起来没法解决点权和边权混合的问题,
不过由于floyd算法的一个性质使本题可用floyd算法。
floyd算法最外层循环枚举的是中间点,我们将点按点权从小到大排序,
这样在floyd算法中,对于路径i->k->j,点权最大的点必然是i、j、k中的1个,
然后就能计算出答案了。

时间复杂度:O(N^3)
考试时直接floyed只有30分,但是多做几次floyed就可以AC,但这不是正解,不考虑
 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct zt
{
int x,i;
}c[];
int n,m,dis[][],cost[][],p[];
bool cmp(zt a,zt b)
{
return a.x<b.x;
}
int gi()
{
char ch=getchar();
int x=;
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x;
}
int main()
{
int q,x,y,z,i,j,k;
cin>>n>>m;
memset(dis,/,sizeof(dis));
memset(cost,/,sizeof(cost));
for (i=; i<=n; i++)
{
c[i].x=gi();
c[i].i=i;
p[i]=c[i].x;
dis[i][i]=;
}
sort(c+,c+n+,cmp);
for (i=; i<=m; i++)
{
x=gi();
y=gi();
z=gi();
dis[x][y]=min(dis[x][y],z);
dis[y][x]=dis[x][y];
}
for (k=; k<=n; k++)
{
for (i=; i<=n; i++)
{
for (j=; j<=n; j++)
{
dis[i][j]=min(dis[i][c[k].i]+dis[c[k].i][j],dis[i][j]);
cost[i][j]=min(cost[i][j],dis[i][c[k].i]+dis[c[k].i][j]+max(p[i],max(p[j],c[k].x)));
}
}
}
cin>>q;
while (q--)
{
scanf("%d%d",&x,&y);
printf("%d\n",cost[x][y]);
}
}


[USACO09DEC]牛收费路径Cow Toll Paths的更多相关文章

  1. P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...

  2. Luogu P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  3. 洛谷 P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  4. [USACO09DEC]牛收费路径Cow Toll Paths(floyd、加路径上最大点权值的最短路径)

    https://www.luogu.org/problem/P2966 题目描述 Like everyone else, FJ is always thinking up ways to increa ...

  5. [Luogu P2966][BZOJ 1774][USACO09DEC]牛收费路径Cow Toll Paths

    原题全英文的,粘贴个翻译题面,经过一定的修改. 跟所有人一样,农夫约翰以宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道 ...

  6. 洛谷 2966 2966 [USACO09DEC]牛收费路径Cow Toll Paths

    [题意概述] 给出一个图,点有正点权,边有正边权,通过两点的代价为两点间的最短路加上路径通过的点的点权最大值. 有M个询问,每次询问通过两点的代价. [题解] 先把点按照点权从小到大排序,然后按照这个 ...

  7. 【[USACO09DEC]牛收费路径Cow Toll Paths】

    很妙的一道题,我之前一直是用一个非常暴力的做法 就是枚举点权跑堆优化dijkstra 但是询问次数太多了 于是一直只有50分 今天终于抄做了这道题,不贴代码了,只说一下对这道题的理解 首先点权和边权不 ...

  8. P2966 [USACO09DEC]Cow Toll Paths G

    题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...

  9. [USACO09DEC] Cow Toll Paths

    https://www.luogu.org/problem/show?pid=2966 题目描述 Like everyone else, FJ is always thinking up ways t ...

随机推荐

  1. alpha冲刺第四天

    一.合照 二.项目燃尽图 三.项目进展 今天实现了登录界面和服务器的连接了,牵手成功. 一些具体的界面细化实现,一些button的响应实现 四.明日规划 登录界面和服务器的连接实现耗费了太多时间,接下 ...

  2. UserControl 用户定义组件

    <pages> <namespaces> <add namespace="System.Web.Optimization" /> </na ...

  3. 1013团队Beta冲刺day6

    项目进展 李明皇 今天解决的进度 进行前后端联动调试 明天安排 完善程序运行逻辑 林翔 今天解决的进度 服务器端发布消息,删除消息,检索消息,个人发布的action 明天安排 图片功能遇到问题,微信小 ...

  4. 数据结构基础——指针及动态内存分配(malloc)

    一.指针 C语言中的指针是一种数据类型,比如说我们用int *a;就定义了一个指针a,它指向一个int类型的数.但是这个指针是未初始化的,所以,一般的,我们都在创建指针时初始化它,以免出错,在还不吃的 ...

  5. APP案例分析

    产品 蓝叠安卓模拟器 选择理由     看了一眼桌面,就这个比较有意思.现在很多人喜欢玩手游,经常喜欢开个小号搞事情.这时候身边又没有多余的手机,怎么办?安卓模拟器下一个.手机屏幕太小玩起来没意思怎么 ...

  6. 201621123031 《Java程序设计》第4周学习总结

    Week04-面向对象设计与继承 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键词:继承.覆盖.多态.抽象 1.2 尝试使用思维导图将这些关键词组织起来. 1.3 可选: ...

  7. 201621123044《JAVA程序设计》第一周学习总结

    1. 本周学习总结 1.了解了JAVA的诞生以及发展历史简介.JAVA语言的特点,以及JAVA的电脑安装以及环境配置. 2.JAVA不仅可以用eclipse进行编写,也可以在记事本和notepad++ ...

  8. hdu 4553 约会安排

    约会安排 http://acm.hdu.edu.cn/showproblem.php?pid=4553 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  9. Scala 快速入门

     Scalable 编程语言 纯正的的面向对象语言 函数式编程语言 无缝的java互操作 scala之父 Martin Odersky 1. 函数式编程 函数式编程(functional progr ...

  10. nyoj 韩信点兵

    描述相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排.五人一排.七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了.输入3个非负整数a,b,c ,表示每种队形排尾的人数 ...