题意:$\sum_{d|n}f(d)=n^{2}-3n+2$,求$\sum_{i=1}^{n}f(i)\mod 10^{9}+7$ , $n \leqslant 10^{9}$ $\left( T \leqslant 500\right)$组数据,只有5组>$10^{6}$

题解:看了式子感觉像是反演,但是呢....

令$S(n)=\sum_{i=1}^{n}f(i)$

那么$S(n)=\sum_{i=1}^{n}\sum_{d|i}f(d)=\sum_{i=1}^{n}f(d)\lfloor\frac{n}{d}\rfloor=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} f(d)=\sum_{d=1}^{n}S(\lfloor\frac{n}{d}\rfloor)=\sum_{i=1}^{n}(i-1)*(i-2)$

所以$S(n)=\frac{n*(n-1)*(n-2)}{3}-\sum_{i=2}^{n}f(i)$

所以老套路,预处理$maxn^{\frac{2}{3}}$的S(i),这个可以直接算,总复杂度也是$O(n^{\frac{2}{3}})$

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#define MAXN 5000000
#define mod 1000000007
#define inv 333333336
#define ll long long
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
} int f[MAXN+];
map<int,ll> mp; ll calc(int x)
{
if(x<=MAXN)return f[x];
map<int,ll>::iterator it;
if((it=mp.find(x))!=mp.end())return it->second;
ll sum=1LL*x*(x-)%mod*(x-)%mod*inv%mod;
int last;
for(int i=;i<=x;i=last+)
{
last=x/(x/i);
sum-=1LL*(last-i+)*calc(x/i);
while(sum<)sum+=mod;
}
return (mp[x]=sum);
} int main()
{
for(int i=;i<=MAXN;i++)
f[i]=1LL*(i-)*(i-)%mod;
for(int i=;i<=MAXN;i++)
for(int j=i<<;j<=MAXN;j+=i)
f[j]=(f[j]-f[i]+mod)%mod;
// for(int i=1;i<=10;i++)cout<<f[i]<<endl;
for(int i=;i<=MAXN;i++) f[i]=(f[i]+f[i-])%mod;
for(int t=read();t;t--)
printf("%lld\n",calc(read()));
return ;
}

[hdu5608]function的更多相关文章

  1. 通过百度echarts实现数据图表展示功能

    现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...

  2. hdu5608:function

    $n^2-3n+2=\sum_{d|i}f(i)$,问$f(i)$前$n$项和. 方法一:直接切入! $S(n)=\sum_{i=1}^{n}f(i)=\sum_{i=1}^{n}(i^2-3i+2- ...

  3. jsp中出现onclick函数提示Cannot return from outside a function or method

    在使用Myeclipse10部署完项目后,原先不出错的项目,会有红色的叉叉,JSP页面会提示onclick函数错误 Cannot return from outside a function or m ...

  4. JavaScript function函数种类

    本篇主要介绍普通函数.匿名函数.闭包函数 目录 1. 普通函数:介绍普通函数的特性:同名覆盖.arguments对象.默认返回值等. 2. 匿名函数:介绍匿名函数的特性:变量匿名函数.无名称匿名函数. ...

  5. 在ubuntu16.10 PHP测试连接MySQL中出现Call to undefined function: mysql_connect()

    1.问题: 测试php7.0 链接mysql数据库的时候发生错误: Fatal error: Uncaught Error: Call to undefined function mysqli_con ...

  6. jquery中的$(document).ready(function() {});

    当文档载入时执行function函数里的代码, 这部分代码主要声明,页面加载后 "监听事件" 的方法.例如: $(document).ready( $("a") ...

  7. Function.prototype.toString 的使用技巧

    Function.prototype.toString这个原型方法可以帮助你获得函数的源代码, 比如: function hello ( msg ){ console.log("hello& ...

  8. 转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38

    转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38http://space.itpub. ...

  9. [Xamarin] 透過Native Code呼叫 JavaScript function (转帖)

    今天我們來聊聊關於如何使用WebView 中的Javascript 來呼叫 Native Code 的部分 首先,你得先來看看這篇[Xamarin] 使用Webview 來做APP因為這篇文章至少講解 ...

随机推荐

  1. 2017 清北济南考前刷题Day 3 afternoon

    期望得分:100+40+100=240 实际得分:100+40+100=240 将每个联通块的贡献乘起来就是答案 如果一个联通块的边数>点数 ,那么无解 如果边数=点数,那么贡献是 2 如果边数 ...

  2. 洛谷 P3797 妖梦斩木棒

    https://www.luogu.org/problem/show?pid=3797 题目背景 妖梦是住在白玉楼的半人半灵,拥有使用剑术程度的能力. 题目描述 有一天,妖梦正在练习剑术.地面上摆放了 ...

  3. RE:1054652545 - 论自己是如何蠢死的

    1.Java web 项目中 login/list 文件夹中return "login/list" 反复读取不到对应的jsp文件 一周后检查出来的原因上一级文件夹login前面多出 ...

  4. 14-TypeScript简单工厂模式

    在TypeScript中,要调用功能,通常在调用方通过实例化被调用方对象来调用相关方法,但这种实现在调用方和被调用方形成了强耦合的关系. 另外如果被调用方有种实现,在调用方需要根据场景去实例化不同的类 ...

  5. DOM中的事件对象(event)

    在触发DOM上的某个事件时,会产生一个事件对象event,这个对象中包含着所有与事件相关的信息. 包括导致事件的元素.事件的类型以及其他与特定事件相关的信息. 例如:鼠标操作导致的事件对象中,会包含鼠 ...

  6. 第三章Hibernate关联映射

    第三章Hibernate关联映射 一.关联关系 类与类之间最普通的关系就是关联关系,而且关联是有方向的. 以部门和员工为列,一个部门下有多个员工,而一个员工只能属于一个部门,从员工到部门就是多对一关联 ...

  7. Linq 集合操作符 Except,Intersect,Union

    IList<string> s1 = new List<string>() { "One", "Two", "Three&qu ...

  8. SpringBoot的RestController vs @ResponseBody + @Controller

    @Controller和@RestController的区别?官方文档:@RestController is a stereotype annotation that combines @Respon ...

  9. Linux实用的网站

    ABCDOCKER网站        https://www.abcdocker.com/ 徐亮伟网站          http://www.xuliangwei.com/ 安装centos物理服务 ...

  10. python爬虫requests 下载图片

    import requests # 这是一个图片的url url = 'http://yun.itheima.com/Upload/Images/20170614/594106ee6ace5.jpg' ...