本章介绍普里姆算法。和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。

目录
1. 普里姆算法介绍
2. 普里姆算法图解
3. 普里姆算法的代码说明
4. 普里姆算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

普里姆算法介绍

普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。

基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。
从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

普里姆算法图解

以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
    此时,U={A}。
第2步:将顶点B加入到U中。
    上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
    上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
    上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
    上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
    上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
    上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。

此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G

普里姆算法的代码说明

以"邻接矩阵"为例对普里姆算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph; // 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。

2. 普里姆算法

/*
* prim最小生成树
*
* 参数说明:
* G -- 邻接矩阵图
* start -- 从图中的第start个元素开始,生成最小树
*/
void prim(Graph G, int start)
{
int min,i,j,k,m,n,sum;
int index=0; // prim最小树的索引,即prims数组的索引
char prims[MAX]; // prim最小树的结果数组
int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = G.vexs[start]; // 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < G.vexnum; i++ )
weights[i] = G.matrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0; for (i = 0; i < G.vexnum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue; j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < G.vexnum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
} // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = G.vexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < G.vexnum; j++)
{
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && G.matrix[k][j] < weights[j])
weights[j] = G.matrix[k][j];
}
} // 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]);
if (G.matrix[m][n]<min)
min = G.matrix[m][n];
}
sum += min;
}
// 打印最小生成树
printf("PRIM(%c)=%d: ", G.vexs[start], sum);
for (i = 0; i < index; i++)
printf("%c ", prims[i]);
printf("\n");
}

普里姆算法的源码

这里分别给出"邻接矩阵图"和"邻接表图"的普里姆算法源码。

1. 邻接矩阵源码(matrix_udg.c)

2. 邻接表源码(list_udg.c)

Prim算法(一)之 C语言详解的更多相关文章

  1. Floyd算法(一)之 C语言详解

    本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...

  2. Dijkstra算法(一)之 C语言详解

    本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...

  3. Kruskal算法(一)之 C语言详解

    本章介绍克鲁斯卡尔算法.和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3 ...

  4. 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)

    一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...

  5. 图的建立(邻接矩阵)+深度优先遍历+广度优先遍历+Prim算法构造最小生成树(Java语言描述)

    主要参考资料:数据结构(C语言版)严蔚敏   ,http://blog.chinaunix.net/uid-25324849-id-2182922.html   代码测试通过. package 图的建 ...

  6. Java Web----EL(表达式语言)详解

     Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...

  7. 二分算法题目训练(二)——Exams详解

    CodeForces732D——Exams 详解 Exam 题目描述(google翻译) Vasiliy的考试期限将持续n天.他必须通过m门科目的考试.受试者编号为1至m. 大约每天我们都知道当天可以 ...

  8. Kruskal算法 - C语言详解

    最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总 ...

  9. 拓扑排序(一)之 C语言详解

    本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...

随机推荐

  1. c++ 时间类型详解 time_t

    Unix时间戳(Unix timestamp),或称Unix时间(Unix time).POSIX时间(POSIX time),是一种时间表示方式,定义为从格林威治时间1970年01月01日00时00 ...

  2. Linux下安装mysql数据库

    l 检查是否已安装mysql的相关包 [root@localhost ~]# rpm -qa|grep -i mysql MySQL-server-5.6.19-1.el6.x86_64 MySQL- ...

  3. halcon三种模板匹配方法

    halcon有三种模板匹配方法:即Component-Based.Gray-Value-Based.Shaped_based,分别是基于组件(或成分.元素)的匹配,基于灰度值的匹配和基于形状的匹配,此 ...

  4. 使用pango-Cairo列出系统中的有效字体

    使用pango-Cairo列出系统中的有效字体,代码来源于gtk-app-devel-list fonts list using pango #include <glib.h> #incl ...

  5. JSON数据查询方法

    在进行前端项目开发的时候时长会遇到JSON的数据查找问题,如何方便快速查找?这里推荐一个linqjs组件,项目主页参见http://linqjs.codeplex.com/ 查询对象 var json ...

  6. 【菜鸟玩Linux开发】在C++里操作MySQL

    MySQL是一个的开源关系型数据库,对于服务端开发来说是一个优秀的选择.本篇内容将介绍如何在C++程序里操作MySQL数据库. ———————————————————————————————————— ...

  7. 细心很重要---猜猜这个SQL执行的什么意思

    今天在帮客户做语句优化的时候,突然遇到这样一个语句,类似下面的例子(原语句是个update) 例子中使用AdventureWorks数据中的两个表. productID 是[Production].[ ...

  8. RCP:给GEF编辑器添加网格和标尺。

    网格和标尺效果如上图所示. 添加网格比较简单,也可以自己实现,主要思路是为编辑器添加一个GridLayer.但是还是建议参考eclipse自己的GEF样例来实现. 需要注意两个部分: 1.重写org. ...

  9. kvm 简介

    1. 基础概念 1.1 kvm整合入linux 内核: 1.2 kvm模型中,每一个虚拟机对于linux而言都是一个标准进程: 1.3 普通的linux进程有用户和内核两个空间,在kvm模型中定义了客 ...

  10. 全面理解Javascript闭包和闭包的几种写法及用途

    好久没有写博客了,过了一个十一长假都变懒了,今天总算是恢复状态了.好了,进入正题,今天来说一说javascript里面的闭包吧!本篇博客主要讲一些实用的东西,主要将闭包的写法.用法和用途.  一.什么 ...