#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<cmath>
#include<map>
using namespace std; const int mx=4e4+;
struct N
{
int v,d;
N(int x,int y)
{
v=x;
d=y;
}
};
vector<N>g[mx],q[mx];
int father[mx];
int dis[mx];
bool vs[mx];
int ans[mx]; void Init(int n)
{
for (int i=;i<=n;i++)
{
father[i]=i;
dis[i]=;
vs[i]=false;
g[i].clear();
q[i].clear();
}
} int Find(int x)
{
int w=x;
while (w!=father[w]) w=father[w];
while (x!=father[x])
{
int fa=father[x];
father[x]=w;
x=fa;
}
return w;
} void un(int x,int y)
{
int rx=Find(x);
int ry=Find(y);
father[y]=x;
} void dfs(int u,int fa,int d)
{
dis[u]=d;
vs[u]=true;
for (int i=;i<g[u].size();i++)
{
N k=g[u][i];
if (vs[k.v]) continue;
dfs(k.v,u,d+k.d);
}
for (int i=;i<q[u].size();i++)
{
N k=q[u][i];
if (!vs[k.v]) continue;
ans[k.d]=dis[u]+dis[k.v]-*dis[Find(k.v)];
}
un(fa,u);
} int main()
{
int n,m;
int t;
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
Init(n);
for (int i=;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
g[u].push_back(N(v,w));
g[v].push_back(N(u,w));
}
for (int i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
q[u].push_back(N(v,i));
q[v].push_back(N(u,i));
}
dfs(,,);
for (int i=;i<=m;i++) printf("%d\n",ans[i]);
}
}

hdu 2586 How far away ?(离线求最近公共祖先)的更多相关文章

  1. 【LCA求最近公共祖先+vector构图】Distance Queries

    Distance Queries 时间限制: 1 Sec  内存限制: 128 MB 题目描述 约翰的奶牛们拒绝跑他的马拉松,因为她们悠闲的生活不能承受他选择的长长的赛道.因此他决心找一条更合理的赛道 ...

  2. POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)

    题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...

  3. 求最近公共祖先(LCA)的各种算法

    水一发题解. 我只是想存一下树剖LCA的代码...... 以洛谷上的这个模板为例:P3379 [模板]最近公共祖先(LCA) 1.朴素LCA 就像做模拟题一样,先dfs找到基本信息:每个节点的父亲.深 ...

  4. tarjan算法求最近公共祖先

    tarjian算法 LCA: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们 ...

  5. 用“倍增法”求最近公共祖先(LCA)

    1.最近公共祖先:对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.的祖先且x的深度尽可能大. 2.朴素算法:记录下每个节点的父亲,使节点u,v一步一步地向上找 ...

  6. LCA 在线倍增法 求最近公共祖先

    第一步:建树  这个就不说了 第二部:分为两步  分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...

  7. hdu 2586 欧拉序+rmq 求lca

    题意:求树上任意两点的距离 先说下欧拉序 对这颗树来说 欧拉序为 ABDBEGBACFHFCA 那欧拉序有啥用 这里先说第一个作用 求lca 对于一个欧拉序列,我们要求的两个点在欧拉序中的第一个位置之 ...

  8. hdu 2586 How far away ? ( 离线 LCA , tarjan )

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

随机推荐

  1. oracle加并行参数PARALLEL

    select /*+ PARALLEL(t,4) */ * from table1

  2. xampp 配置虚拟主机

    1.安装好xampp后 2.找到安装目录 apache目录--conf目录--extra目录--httpd-vhosts.conf文件(用记事本或者别的编辑器打开) 文件最后添加代码 <Virt ...

  3. sql参数化查询in的参数

    private Query setParameter(Query query, Map<String, Object> map) { if (map != null) { Set<S ...

  4. HTML特殊字符编码对照表

    HTML特殊字符编码对照表 特殊符号 命名实体 十进制编码 特殊符号 命名实体 十进制编码 特殊符号 命名实体 十进制编码 Α Α Α Β Β Β Γ Γ Γ Δ Δ Δ Ε Ε Ε Ζ Ζ Ζ Η ...

  5. window 10 用composer安装 基于 Laravel 5.3 的 Coaster CMS Curl错误77解决

    安装教程来自 http://laravelacademy.org/post/6547.html 1.系统环境windows 10 nodejs3.9.2 composer1.2.4(国内镜像) Cmd ...

  6. EL表达式显示数据取整问题

    第一 插入fmt标签库 <%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%&g ...

  7. C语言dsPIC / PIC24 serial bootloader和C#语言bootloader PC端串口通信程序

    了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 新dsPIC/PIC2 ...

  8. sql 用union合并合并查询结果

    合并操作与连接相似,因为他们都是将两个表合并起来的另一个表的方法,然而他们的合并方法有本质的区别, 合并是两个表的相加,连接时时两个表的相乘: 01 在合并中两个表原列的数量与数据类型必须相同:在连接 ...

  9. tomcat gzip compression not working for large js files

    solution 1: <Connector port="8080" protocol="HTTP/1.1" connectionTimeout=&quo ...

  10. 从append追加的<tr>里传ID参数给js函数

    今天这个小问题几乎把我整崩溃 $.each(data.list, function (index, item) { i++; shenhe = "待审核"; tixing = it ...