\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup
Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2(\gamma)\). We will explore its adjoint operator \(\partial^*_i\) in \(L^2(\gamma)\). For this purpose, take \(f,g\in C_0^{\infty}\), i.e., infinitely many times differentiable functions with compact support. Then
\[\begin{array}{rcl}<\partial_{i}f,g>_{L^{2}\left(\gamma\right)} & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int\partial_{i}f\left(x\right)g\left(x\right)e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int f\left(x\right)\left[x_{i}g\left(x\right)-\partial_{i}g\left(x\right)\right]e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & <f,\left(x_{i}-\partial_{i}\right)g>_{L^{2}\left(\gamma\right)}.\end{array}\]
We see that \(\partial_{i}^{*}=x_{i}-\partial_{i}\), where the first term is a multiplication operator. Define a second-order differential operator by
\[L=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}=x\cdot\nabla-\Delta\]
It is positive and symmetric and plays the role of the Laplacian on \(L^{2}(\gamma)\). Symmetry is shown by
\[<Lf,g>=\sum_{i=1}^{d}<\partial_{i}^{*}\partial_{i}f,g>=\sum_{i=1}^{d}<\partial_{i}f,\partial_{i}g>=\sum_{i=1}^{d}<f,\partial_{i}^{*}\partial_{i}g>=<f,Lg>\]
Positivity follows by setting \(f=g\) in the middle expression above.
The operator \(L\) is called the Ornstein-Uhlenbeck operator.
Proposition The Hermite polynomials are eigenvectors for the Ornstein-Uhlenbeck operator. Moreover, for any multi-index \(\alpha\in\mathbb{N}^{d}\),
\[LH_{\alpha}=\left|\alpha\right|H_{\alpha}.\]
Proof. Again consider \(d=1\). We first explore the action of \(D^{*}\) on \(H_{n}\).
\[<D^{*}H_{n-1},H_{j}>=<H_{n-1},DH_{j}>=n<H_{n-1},H_{j-1}>=0,j\ne n.\]
So, \(D^{*}H_{n-1}\) is a multiple of \(H_{n}\). Take \(j=n\).
\[<D^{*}H_{n-1},H_{n}>=n<H_{n-1},H_{n-1}>=n(n-1)!=n!=<H_{n},H_{n}>.\]
Thus \(D^{*}H_{n-1}=H_{n}\) and it follows that \(\partial_{i}^{*}H_{\alpha-e_{i}}=H_{\alpha}\), for \(d\ge1\), Where \(e_{1},\ldots,e_{n}\) is the standard orthonormal
system. Hence
\[LH_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}H_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\alpha_{i}H_{\alpha-e_{i}}=\sum_{i=1}^{d}\alpha_{i}H_{\alpha}=\left|\alpha\right|H_{\alpha}.\]
We now turn to the Ornstein-Uhlenbeck semigroup, i.e., the semigroup generated by \(L\). For this purpose we use our spectral decomposition of \(L^{2}(\gamma)\). Since \(\left\{ H_{\alpha},\alpha\in\mathbb{N}\right\}\) form a orthonormal system of \(L^{2}(\gamma)\), for any \(f\in L^{2}(\gamma)\),
\[f=\sum_{\alpha\in\mathbb{N}}a_{\alpha}H_{\alpha}.\]
Let \(\left(T_{t}\right)_{t\ge0}=\left(e^{-tL}\right)_{t\ge 0}\) be the family of bounded linear operators acting on \(L^{2}(\gamma)\) by
\[e^{-tL}f=\sum_{\alpha\in\mathbb{N}^{d}}e^{t\left|\alpha\right|}a_{\alpha}H_{\alpha}.\]
In particular
\[e^{-tL}H_{\alpha}=e^{-t\left|\alpha\right|}H_{\alpha}.\]
It follows that \(e^{-tL}\) is a bounded operator on \(L^{2}(\alpha)\) for any \(t\ge0\) and that \(e^{-tL}e^{-sL}=e^{-(s+t)L},s,t\ge0\). Since \(T_{0}\) is the identity, \(\left(T_{t}\right)_{t\ge0}\) forms a semigroup.
Any \(\Phi\in L^{2}(\gamma\times\gamma)\) defines a bounded linear operator on \(L^{2}(\gamma)\) by
\[Tf(x)=\int\Phi(x,y)f(y)d\gamma(y).\]
It is not essential here that we work in our Gaussian setting. Any \(L^{2}\)-space would do fine. We verify the boundedness. The Cauchy-Schwardz inequality gives that
\[\left(Tf(x)\right)^{2}\le\int|\Phi(x,y)|^{2}d\gamma(y)\int|f(y)|^{2}d\gamma(y).\]
Integrating both sides in \(x\) leads to
\[\left|\left|Tf\right|\right|^{2}\le\left|\left|\Phi\right|\right|_{L^{2}(\gamma\times\gamma)}^{2}\left|\left|f\right|\right|^{2}.\]
We now leave the general situation. The operator \(T_{t}\), for \(t>0\), is given by a kernel in the sense that
\[T_{t}f(x)=\int_{\mathbb{R}^{d}}M_{t}^{\gamma}(x,y)f(y)d\gamma(y).\]
The explicit expression for this kernel was found already in 1866 by Mehler. It is named the Mehler kernel. Using the normalized Hermite polynomials \(h_{\alpha}\), we shall first verify that the kernel can be expressed in the form
\[M_{t}^{\gamma}(x,y)=\sum_{\alpha\in\mathbb{N}^{d}}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]
It is easy to check that this series converges in \(L^{2}(\gamma\times\gamma)\). Consider, for $N\in\mathbb{N}$, the truncated kernel
\[\sum_{|\alpha|<N}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]
For \(|\beta|<N\), the corresponding operator acts on \(H_{\beta}\) as
\[\int\sum_{|\alpha|<N}e^{t|\alpha|}h_{\alpha}(x)h_{\alpha}(y)H_{\beta}(y)d\gamma(y)=e^{-t|\beta|}<h_{\beta},H_{\beta}h_{\beta}(x)=e^{-t|\beta|}\left|\left|H_{\beta}\right|\right|h_{\beta}(x)=e^{-t|\beta|}H_{\beta}=T_{t}H_{\beta}.\]
Since the truncated kernels converge in \(L^{2}(\gamma\times\gamma)\), the corresponding operators converge in the operator norm. We conclude that \(T_{t}\) can be epresented by Mehler kernel. We next want to compute a closed expression for \(M_{t}^{\gamma}\). Let \(d=1\). Since \(\mathcal{F}\left(e^{-\xi^{2}}\right)(x)=\sqrt{\pi}e^{-\frac{x^{2}}{4}}\), where \(\mathcal{F}\) denotes the Fourier transform, \(H_{n}\) can be written
\[\begin{array}{rcl}H_{n}\left(y\right) & = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}e^{-\frac{y^{2}}{2}}=\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}\frac{1}{\sqrt{2\pi}}\int e^{iy\xi-\frac{^{\xi^{2}}}{2}}d\xi\\& = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi.\end{array}\]
Assuming that the order of summation and integration can be switched. By using the generating function of Hermite polynomial, we get
\[\begin{array}{rcl}M_{t}^{\gamma} & = & \sum_{n=0}^{\infty}e^{-tn}h_{n}\left(x\right)h_{n}\left(y\right)\\& = & \sum_{n=0}^{\infty}e^{-tn}\frac{1}{n!}H_{n}\left(x\right)\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}int\sum_{n=0}^{\infty}\frac{1}{n!}\left(-i\xi e^{-t}\right)^{n}H_{n}\left(x\right)e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}\int e^{i\xi\left(y-e^{t}x+\frac{\xi^{2}}{2}e^{-2t}\right)}d\xi\end{array}\]
Let \(\xi^{t}=\xi\sqrt{1-e^{-2t}}\). Then, taking the inverse Fourier transform yields
\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{y^{2}}{2}}}{\sqrt{1-e^{-2t}}}e^{-\frac{\left(y-e^{-t}x\right)^{2}}{1-e^{-2t}}}.\]
This is a closed expression for the kernel, but it remains to verify the switch of order above. BY using dominated convergence theorem, it is ease to get the conclusion. Let \(d\ge1\). Then
\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{\left|y\right|^{2}}{2}}}{\sqrt{\left(1-e^{-2t}\right)^{d}}}e^{-\frac{\left|y-e^{-t}x\right|^{2}}{1-e^{-2t}}}.\]
Making the change of variable \(z=\frac{y-e^{-t}x}{\sqrt{1-e^{-2t}}}\), we get
\[T_{t}f\left(x\right)=\int M_{t}^{\gamma}\left(x,y\right)f\left(y\right)d\gamma\left(y\right)=\int f\left(e^{-t}x+z\sqrt{1-e^{-2t}}\right)d\gamma\left(z\right).\]
This is sometimes called Mehler's formula.
\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup的更多相关文章
- C++ Primer : : 第十四章 : 重载运算符与类型转换之类型转换运算符和重载匹配
类型转换运算符 class SmallInt { public: SmallInt(int i = 0) : val(i) { if (i < 0 || i > 255) throw st ...
- C++ 重载操作符与转换
<C++ Primer 4th>读书笔记 重载操作符是具有特殊名称的函数:保留字 operator 后接需定义的操作符号. Sales_item operator+(const Sales ...
- LA 5135 Mining Your Own Business
求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...
- 从String类看写C++ class需要注意的地方
#include <iostream> #include <string.h> using namespace std; class String { char* m_data ...
- C++学习笔记9-运算符重载
1. 重载运营商必须有一个类类型的操作数 对于内置类型运营商.它的意义不能改变. 例如,内置整数加法运算不能被重新定义: // error: cannotredefine built-in opera ...
- 《C++ Primer》之重载操作符与转换(下)
转换与类类型 可用一个实参调用的非 explicit 构造函数定义一个隐式转换.当提供了实参类型的对象而需要一个类类型的对象时,编译器将使用该转换.这种构造函数定义了到类类型的转换.除了定义到类类型的 ...
- VK Cup 2017 - Round 2
FallDream打的AB都FFT了,只剩一个我打的C,没进前一百,之后看看马拉松复活赛有没机会呗. A. Voltage Keepsake 题目大意:n个东西,每个东西一开始有bi能源,每秒消耗ai ...
- 2019.01.14 bzoj2752: [HAOI2012]高速公路(线段树)
传送门 线段树菜题. 题意简述:给一条nnn个点的链,链有边权,支持区间修改边权,查询在一段区间内随机选择不同的起点和终点路径的期望总边权和. 思路:考虑每条边的贡献. 考虑对于一段区间[l,r][l ...
- AOAPC I: Beginning Algorithm Contests (Rujia Liu) Volume 6. Mathematical Concepts and Methods
uva 106 这题说的是 说计算 x^2 + y^2 = z^2 xyz 互质 然后计算个数和 在 N内 不在 勾股数之内的数的个数 然后去找需要的 维基百科上 看到 另 n*m*2 =b ...
随机推荐
- 05-Java中的String类
程序设计思路: 首先目标是使输入的字符串加上某个数变成另一个字符串,从而相当于对字符串进行加密. 第一步输入一个字符串String类型: 第二步把这个字符串转变成字符数组: 第三步让这个数组的每一个字 ...
- 在Spring MVC项目中,注解方式使用 .properties 文件及 UTF-8编码问题
xml配置 <!-- 配置文件 --> <bean id="configProperties" class="org.springframework.b ...
- ORACLE 数据库需要创建索引的规则
1.表的主键.外键必须有索引: 2.数据量超过300的表应该有索引: 3.经常与其他表进行连接的表,在连接字段上应该建立索引: 4.经常出现在Where子句中的字段,特别是大表的字段,应该建立索引: ...
- liunx打开指定端口
1.切换为root用户 2.切换路径至:/etc/sysconfig 3.vi编辑添加一行: -A INPUT -m state --state NEW -m tcp -p tcp --dport 3 ...
- IOS中无缓存的图片载入
在IOS中,我们常用[UIImage imageNamed]方法获取图像,这种方法简便,容易理解.但是有个缺点,就是有缓存.这种方式 传人的图像的就是通过文件名方式文件名.如果,我们内存有限,我们就必 ...
- 基于御安全APK加固的游戏反外挂方案
一. 前言 随着移动互联网的兴起,移动游戏市场近几年突然爆发,收入规模快速增长.根据第三方数据统计,国内移动游戏2015年市场规模已达514.6亿.由于手游市场强势兴起,而且后续增长势头会愈加猛烈.火 ...
- SQL语句性能测试
/* --Sqlserver 清楚执行缓存, 用于SQL语句性能测试 DBCC DROPCLEANBUFFERS DBCC FREEPROCCACHE */
- 了解Hadoop和大数据
1. 场景: 现在人产生数据越来越快,机器则更快,所以需要另外的一种处理数据的方法. 硬盘容量增加,但是性能没跟上,解决办法是将数据分到多块硬盘,然后同时读取. 问题: 硬件问题 -- 复 ...
- 其他浏览器(firefox,chrome)可以上网 ie(Internet Explorer)无法上网 解决方法
http://blog.csdn.net/andywangcn/article/details/8945366
- archlinux 安装过程记录
2014年安装了一次,使用U盘启动安装的,但是当时网络有问题,断断续续,没有做详细记录. 现在到了杭州,重新来一次. 使用U盘安装 下载ISO :http://mirrors.163.com/arch ...