Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2(\gamma)\). We will explore its adjoint operator \(\partial^*_i\)  in \(L^2(\gamma)\). For this purpose, take \(f,g\in C_0^{\infty}\), i.e., infinitely many times differentiable functions with compact support. Then

\[\begin{array}{rcl}<\partial_{i}f,g>_{L^{2}\left(\gamma\right)} & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int\partial_{i}f\left(x\right)g\left(x\right)e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int f\left(x\right)\left[x_{i}g\left(x\right)-\partial_{i}g\left(x\right)\right]e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & <f,\left(x_{i}-\partial_{i}\right)g>_{L^{2}\left(\gamma\right)}.\end{array}\]

We see that \(\partial_{i}^{*}=x_{i}-\partial_{i}\), where the first term is a multiplication operator. Define a second-order differential operator by

\[L=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}=x\cdot\nabla-\Delta\]

It is positive and symmetric and plays the role of the Laplacian on \(L^{2}(\gamma)\). Symmetry is shown by

\[<Lf,g>=\sum_{i=1}^{d}<\partial_{i}^{*}\partial_{i}f,g>=\sum_{i=1}^{d}<\partial_{i}f,\partial_{i}g>=\sum_{i=1}^{d}<f,\partial_{i}^{*}\partial_{i}g>=<f,Lg>\]

Positivity follows by setting \(f=g\) in the middle expression above.

The operator \(L\) is called the Ornstein-Uhlenbeck operator.

Proposition The Hermite polynomials are eigenvectors for the Ornstein-Uhlenbeck operator. Moreover, for any multi-index \(\alpha\in\mathbb{N}^{d}\),

\[LH_{\alpha}=\left|\alpha\right|H_{\alpha}.\]

Proof. Again consider \(d=1\). We first explore the action of \(D^{*}\) on \(H_{n}\).

\[<D^{*}H_{n-1},H_{j}>=<H_{n-1},DH_{j}>=n<H_{n-1},H_{j-1}>=0,j\ne n.\]

So, \(D^{*}H_{n-1}\) is a multiple of \(H_{n}\). Take \(j=n\).

\[<D^{*}H_{n-1},H_{n}>=n<H_{n-1},H_{n-1}>=n(n-1)!=n!=<H_{n},H_{n}>.\]

Thus \(D^{*}H_{n-1}=H_{n}\) and it follows that \(\partial_{i}^{*}H_{\alpha-e_{i}}=H_{\alpha}\), for \(d\ge1\), Where \(e_{1},\ldots,e_{n}\) is the standard orthonormal

system. Hence

\[LH_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}H_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\alpha_{i}H_{\alpha-e_{i}}=\sum_{i=1}^{d}\alpha_{i}H_{\alpha}=\left|\alpha\right|H_{\alpha}.\]

We now turn to the Ornstein-Uhlenbeck semigroup, i.e., the semigroup generated by \(L\). For this purpose we use our spectral decomposition of \(L^{2}(\gamma)\). Since \(\left\{ H_{\alpha},\alpha\in\mathbb{N}\right\}\) form a orthonormal system of \(L^{2}(\gamma)\), for any \(f\in L^{2}(\gamma)\),

\[f=\sum_{\alpha\in\mathbb{N}}a_{\alpha}H_{\alpha}.\]

Let \(\left(T_{t}\right)_{t\ge0}=\left(e^{-tL}\right)_{t\ge 0}\) be the family of bounded linear operators acting on \(L^{2}(\gamma)\) by

\[e^{-tL}f=\sum_{\alpha\in\mathbb{N}^{d}}e^{t\left|\alpha\right|}a_{\alpha}H_{\alpha}.\]

In particular

\[e^{-tL}H_{\alpha}=e^{-t\left|\alpha\right|}H_{\alpha}.\]

It follows that \(e^{-tL}\) is a bounded operator on \(L^{2}(\alpha)\) for any \(t\ge0\) and that \(e^{-tL}e^{-sL}=e^{-(s+t)L},s,t\ge0\). Since \(T_{0}\) is the identity, \(\left(T_{t}\right)_{t\ge0}\) forms a semigroup.

Any \(\Phi\in L^{2}(\gamma\times\gamma)\) defines a bounded linear operator on \(L^{2}(\gamma)\) by

\[Tf(x)=\int\Phi(x,y)f(y)d\gamma(y).\]

It is not essential here that we work in our Gaussian setting. Any \(L^{2}\)-space would do fine. We verify the boundedness. The Cauchy-Schwardz inequality gives that

\[\left(Tf(x)\right)^{2}\le\int|\Phi(x,y)|^{2}d\gamma(y)\int|f(y)|^{2}d\gamma(y).\]

Integrating both sides in \(x\) leads to

\[\left|\left|Tf\right|\right|^{2}\le\left|\left|\Phi\right|\right|_{L^{2}(\gamma\times\gamma)}^{2}\left|\left|f\right|\right|^{2}.\]

We now leave the general situation. The operator \(T_{t}\), for \(t>0\), is given by a kernel in the sense that

\[T_{t}f(x)=\int_{\mathbb{R}^{d}}M_{t}^{\gamma}(x,y)f(y)d\gamma(y).\]

The explicit expression for this kernel was found already in 1866 by Mehler. It is named the Mehler kernel. Using the normalized Hermite polynomials \(h_{\alpha}\), we shall first verify that the kernel can be expressed in the form

\[M_{t}^{\gamma}(x,y)=\sum_{\alpha\in\mathbb{N}^{d}}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]

It is easy to check that this series converges in \(L^{2}(\gamma\times\gamma)\). Consider, for $N\in\mathbb{N}$, the truncated kernel

\[\sum_{|\alpha|<N}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]

For \(|\beta|<N\), the corresponding operator acts on \(H_{\beta}\) as

\[\int\sum_{|\alpha|<N}e^{t|\alpha|}h_{\alpha}(x)h_{\alpha}(y)H_{\beta}(y)d\gamma(y)=e^{-t|\beta|}<h_{\beta},H_{\beta}h_{\beta}(x)=e^{-t|\beta|}\left|\left|H_{\beta}\right|\right|h_{\beta}(x)=e^{-t|\beta|}H_{\beta}=T_{t}H_{\beta}.\]

Since the truncated kernels converge in \(L^{2}(\gamma\times\gamma)\), the corresponding operators converge in the operator norm. We conclude that \(T_{t}\) can be epresented by Mehler kernel. We next want to compute a closed expression for \(M_{t}^{\gamma}\). Let \(d=1\). Since \(\mathcal{F}\left(e^{-\xi^{2}}\right)(x)=\sqrt{\pi}e^{-\frac{x^{2}}{4}}\), where \(\mathcal{F}\) denotes the Fourier transform, \(H_{n}\) can be written

\[\begin{array}{rcl}H_{n}\left(y\right) & = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}e^{-\frac{y^{2}}{2}}=\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}\frac{1}{\sqrt{2\pi}}\int e^{iy\xi-\frac{^{\xi^{2}}}{2}}d\xi\\& = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi.\end{array}\]

Assuming that the order of summation and integration can be switched. By using the generating function of Hermite polynomial, we get

\[\begin{array}{rcl}M_{t}^{\gamma} & = & \sum_{n=0}^{\infty}e^{-tn}h_{n}\left(x\right)h_{n}\left(y\right)\\& = & \sum_{n=0}^{\infty}e^{-tn}\frac{1}{n!}H_{n}\left(x\right)\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}int\sum_{n=0}^{\infty}\frac{1}{n!}\left(-i\xi e^{-t}\right)^{n}H_{n}\left(x\right)e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}\int e^{i\xi\left(y-e^{t}x+\frac{\xi^{2}}{2}e^{-2t}\right)}d\xi\end{array}\]

Let \(\xi^{t}=\xi\sqrt{1-e^{-2t}}\). Then, taking the inverse Fourier transform yields

\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{y^{2}}{2}}}{\sqrt{1-e^{-2t}}}e^{-\frac{\left(y-e^{-t}x\right)^{2}}{1-e^{-2t}}}.\]

This is a closed expression for the kernel, but it remains to verify the switch of order above. BY using dominated convergence theorem, it is ease to get the conclusion. Let \(d\ge1\). Then

\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{\left|y\right|^{2}}{2}}}{\sqrt{\left(1-e^{-2t}\right)^{d}}}e^{-\frac{\left|y-e^{-t}x\right|^{2}}{1-e^{-2t}}}.\]

Making the change of variable \(z=\frac{y-e^{-t}x}{\sqrt{1-e^{-2t}}}\), we get

\[T_{t}f\left(x\right)=\int M_{t}^{\gamma}\left(x,y\right)f\left(y\right)d\gamma\left(y\right)=\int f\left(e^{-t}x+z\sqrt{1-e^{-2t}}\right)d\gamma\left(z\right).\]

This is sometimes called Mehler's formula.

\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup的更多相关文章

  1. C++ Primer : : 第十四章 : 重载运算符与类型转换之类型转换运算符和重载匹配

    类型转换运算符 class SmallInt { public: SmallInt(int i = 0) : val(i) { if (i < 0 || i > 255) throw st ...

  2. C++ 重载操作符与转换

    <C++ Primer 4th>读书笔记 重载操作符是具有特殊名称的函数:保留字 operator 后接需定义的操作符号. Sales_item operator+(const Sales ...

  3. LA 5135 Mining Your Own Business

    求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...

  4. 从String类看写C++ class需要注意的地方

    #include <iostream> #include <string.h> using namespace std; class String { char* m_data ...

  5. C++学习笔记9-运算符重载

    1. 重载运营商必须有一个类类型的操作数 对于内置类型运营商.它的意义不能改变. 例如,内置整数加法运算不能被重新定义: // error: cannotredefine built-in opera ...

  6. 《C++ Primer》之重载操作符与转换(下)

    转换与类类型 可用一个实参调用的非 explicit 构造函数定义一个隐式转换.当提供了实参类型的对象而需要一个类类型的对象时,编译器将使用该转换.这种构造函数定义了到类类型的转换.除了定义到类类型的 ...

  7. VK Cup 2017 - Round 2

    FallDream打的AB都FFT了,只剩一个我打的C,没进前一百,之后看看马拉松复活赛有没机会呗. A. Voltage Keepsake 题目大意:n个东西,每个东西一开始有bi能源,每秒消耗ai ...

  8. 2019.01.14 bzoj2752: [HAOI2012]高速公路(线段树)

    传送门 线段树菜题. 题意简述:给一条nnn个点的链,链有边权,支持区间修改边权,查询在一段区间内随机选择不同的起点和终点路径的期望总边权和. 思路:考虑每条边的贡献. 考虑对于一段区间[l,r][l ...

  9. AOAPC I: Beginning Algorithm Contests (Rujia Liu) Volume 6. Mathematical Concepts and Methods

    uva 106 这题说的是 说计算 x^2 + y^2  =  z^2  xyz 互质 然后计算个数和 在 N内 不在 勾股数之内的数的个数 然后去找需要的 维基百科上 看到 另 n*m*2 =b   ...

随机推荐

  1. 互联网商业模式O2O、C2C、B2B、B2C等介绍

    O2O是online to offline分为四种运营模式: 1.online to offline是线上交易到线下消费体验 2.offline to online是线下营销到线上交易 3.offli ...

  2. 十大开源的.NET用户界面框架 让GUI设计不再犯难

    选择一款合适的GUI框架是.NET开发中比较重要但又很棘手的问题,因为用户界面相当于一款应用的"门面",直接面向用户.好的UI更能吸引用户,有时甚至成为决定一款应用成败的关键.下面 ...

  3. 关于移动端input框 在微信中 和ios中无法输入文字的问题

    这个是一个提交的页面但是总是无法输入进去文字 在uc中是可以的 但是在微信中 或者ios自带浏览器是无法输入的  绞尽脑汁  找了半天  才发现自己多加了一段代码(这个代码是模版中自带的   我靠) ...

  4. canvas beginPath()

    先举个简单的例子, var myCanvas = document.getElementById("myCanvas"); var context= myCanvas.getCon ...

  5. c# 导出数据到Excel模板

    最近在做一个发邮件的功能,客户要求需要导出一个Excel附件,并给了附件的格式, eg: Last Name 姓 First Name 名 Chinese Characters汉字书写(仅大陆人填写) ...

  6. 云计算P2V的迁移过程

    总结一下客户在传统物理机向虚拟化环境迁移中的典型场景和常用工具及步骤.

  7. 01-Swift 介绍

    简介 Swift 语言由苹果公司在 2014 年推出,用来撰写 OS X 和 iOS 应用程序 2014 年,在 Apple WWDC 发布 几家欢喜,几家愁 愁者:只学Object-C的人 欢喜者: ...

  8. css3之景深

    perspective属性:(目前仅仅支持-webkit-perspective属性,视点距离) 值:number perspective-origin属性:(视点位置) 值:number% numb ...

  9. IOS 问题集锦

    1._ UIWebview 拦截URL的时候:_NSCFString containsString:]: unrecognized selector sent to instance 的解决方案 NS ...

  10. MVC 3 IIS7.5 网站发布及IIS配置文件问题处理

    1.环境配置 1) IIS7.5 2)VS2010 完整版 2.配置internet信息服务功能,直接上图,简洁明了. 3.打开VS2010 ,网站发布, 4.IIS网站设置 添加网站, 5-在浏览器 ...