\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup
Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2(\gamma)\). We will explore its adjoint operator \(\partial^*_i\) in \(L^2(\gamma)\). For this purpose, take \(f,g\in C_0^{\infty}\), i.e., infinitely many times differentiable functions with compact support. Then
\[\begin{array}{rcl}<\partial_{i}f,g>_{L^{2}\left(\gamma\right)} & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int\partial_{i}f\left(x\right)g\left(x\right)e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int f\left(x\right)\left[x_{i}g\left(x\right)-\partial_{i}g\left(x\right)\right]e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & <f,\left(x_{i}-\partial_{i}\right)g>_{L^{2}\left(\gamma\right)}.\end{array}\]
We see that \(\partial_{i}^{*}=x_{i}-\partial_{i}\), where the first term is a multiplication operator. Define a second-order differential operator by
\[L=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}=x\cdot\nabla-\Delta\]
It is positive and symmetric and plays the role of the Laplacian on \(L^{2}(\gamma)\). Symmetry is shown by
\[<Lf,g>=\sum_{i=1}^{d}<\partial_{i}^{*}\partial_{i}f,g>=\sum_{i=1}^{d}<\partial_{i}f,\partial_{i}g>=\sum_{i=1}^{d}<f,\partial_{i}^{*}\partial_{i}g>=<f,Lg>\]
Positivity follows by setting \(f=g\) in the middle expression above.
The operator \(L\) is called the Ornstein-Uhlenbeck operator.
Proposition The Hermite polynomials are eigenvectors for the Ornstein-Uhlenbeck operator. Moreover, for any multi-index \(\alpha\in\mathbb{N}^{d}\),
\[LH_{\alpha}=\left|\alpha\right|H_{\alpha}.\]
Proof. Again consider \(d=1\). We first explore the action of \(D^{*}\) on \(H_{n}\).
\[<D^{*}H_{n-1},H_{j}>=<H_{n-1},DH_{j}>=n<H_{n-1},H_{j-1}>=0,j\ne n.\]
So, \(D^{*}H_{n-1}\) is a multiple of \(H_{n}\). Take \(j=n\).
\[<D^{*}H_{n-1},H_{n}>=n<H_{n-1},H_{n-1}>=n(n-1)!=n!=<H_{n},H_{n}>.\]
Thus \(D^{*}H_{n-1}=H_{n}\) and it follows that \(\partial_{i}^{*}H_{\alpha-e_{i}}=H_{\alpha}\), for \(d\ge1\), Where \(e_{1},\ldots,e_{n}\) is the standard orthonormal
system. Hence
\[LH_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}H_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\alpha_{i}H_{\alpha-e_{i}}=\sum_{i=1}^{d}\alpha_{i}H_{\alpha}=\left|\alpha\right|H_{\alpha}.\]
We now turn to the Ornstein-Uhlenbeck semigroup, i.e., the semigroup generated by \(L\). For this purpose we use our spectral decomposition of \(L^{2}(\gamma)\). Since \(\left\{ H_{\alpha},\alpha\in\mathbb{N}\right\}\) form a orthonormal system of \(L^{2}(\gamma)\), for any \(f\in L^{2}(\gamma)\),
\[f=\sum_{\alpha\in\mathbb{N}}a_{\alpha}H_{\alpha}.\]
Let \(\left(T_{t}\right)_{t\ge0}=\left(e^{-tL}\right)_{t\ge 0}\) be the family of bounded linear operators acting on \(L^{2}(\gamma)\) by
\[e^{-tL}f=\sum_{\alpha\in\mathbb{N}^{d}}e^{t\left|\alpha\right|}a_{\alpha}H_{\alpha}.\]
In particular
\[e^{-tL}H_{\alpha}=e^{-t\left|\alpha\right|}H_{\alpha}.\]
It follows that \(e^{-tL}\) is a bounded operator on \(L^{2}(\alpha)\) for any \(t\ge0\) and that \(e^{-tL}e^{-sL}=e^{-(s+t)L},s,t\ge0\). Since \(T_{0}\) is the identity, \(\left(T_{t}\right)_{t\ge0}\) forms a semigroup.
Any \(\Phi\in L^{2}(\gamma\times\gamma)\) defines a bounded linear operator on \(L^{2}(\gamma)\) by
\[Tf(x)=\int\Phi(x,y)f(y)d\gamma(y).\]
It is not essential here that we work in our Gaussian setting. Any \(L^{2}\)-space would do fine. We verify the boundedness. The Cauchy-Schwardz inequality gives that
\[\left(Tf(x)\right)^{2}\le\int|\Phi(x,y)|^{2}d\gamma(y)\int|f(y)|^{2}d\gamma(y).\]
Integrating both sides in \(x\) leads to
\[\left|\left|Tf\right|\right|^{2}\le\left|\left|\Phi\right|\right|_{L^{2}(\gamma\times\gamma)}^{2}\left|\left|f\right|\right|^{2}.\]
We now leave the general situation. The operator \(T_{t}\), for \(t>0\), is given by a kernel in the sense that
\[T_{t}f(x)=\int_{\mathbb{R}^{d}}M_{t}^{\gamma}(x,y)f(y)d\gamma(y).\]
The explicit expression for this kernel was found already in 1866 by Mehler. It is named the Mehler kernel. Using the normalized Hermite polynomials \(h_{\alpha}\), we shall first verify that the kernel can be expressed in the form
\[M_{t}^{\gamma}(x,y)=\sum_{\alpha\in\mathbb{N}^{d}}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]
It is easy to check that this series converges in \(L^{2}(\gamma\times\gamma)\). Consider, for $N\in\mathbb{N}$, the truncated kernel
\[\sum_{|\alpha|<N}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]
For \(|\beta|<N\), the corresponding operator acts on \(H_{\beta}\) as
\[\int\sum_{|\alpha|<N}e^{t|\alpha|}h_{\alpha}(x)h_{\alpha}(y)H_{\beta}(y)d\gamma(y)=e^{-t|\beta|}<h_{\beta},H_{\beta}h_{\beta}(x)=e^{-t|\beta|}\left|\left|H_{\beta}\right|\right|h_{\beta}(x)=e^{-t|\beta|}H_{\beta}=T_{t}H_{\beta}.\]
Since the truncated kernels converge in \(L^{2}(\gamma\times\gamma)\), the corresponding operators converge in the operator norm. We conclude that \(T_{t}\) can be epresented by Mehler kernel. We next want to compute a closed expression for \(M_{t}^{\gamma}\). Let \(d=1\). Since \(\mathcal{F}\left(e^{-\xi^{2}}\right)(x)=\sqrt{\pi}e^{-\frac{x^{2}}{4}}\), where \(\mathcal{F}\) denotes the Fourier transform, \(H_{n}\) can be written
\[\begin{array}{rcl}H_{n}\left(y\right) & = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}e^{-\frac{y^{2}}{2}}=\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}\frac{1}{\sqrt{2\pi}}\int e^{iy\xi-\frac{^{\xi^{2}}}{2}}d\xi\\& = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi.\end{array}\]
Assuming that the order of summation and integration can be switched. By using the generating function of Hermite polynomial, we get
\[\begin{array}{rcl}M_{t}^{\gamma} & = & \sum_{n=0}^{\infty}e^{-tn}h_{n}\left(x\right)h_{n}\left(y\right)\\& = & \sum_{n=0}^{\infty}e^{-tn}\frac{1}{n!}H_{n}\left(x\right)\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}int\sum_{n=0}^{\infty}\frac{1}{n!}\left(-i\xi e^{-t}\right)^{n}H_{n}\left(x\right)e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}\int e^{i\xi\left(y-e^{t}x+\frac{\xi^{2}}{2}e^{-2t}\right)}d\xi\end{array}\]
Let \(\xi^{t}=\xi\sqrt{1-e^{-2t}}\). Then, taking the inverse Fourier transform yields
\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{y^{2}}{2}}}{\sqrt{1-e^{-2t}}}e^{-\frac{\left(y-e^{-t}x\right)^{2}}{1-e^{-2t}}}.\]
This is a closed expression for the kernel, but it remains to verify the switch of order above. BY using dominated convergence theorem, it is ease to get the conclusion. Let \(d\ge1\). Then
\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{\left|y\right|^{2}}{2}}}{\sqrt{\left(1-e^{-2t}\right)^{d}}}e^{-\frac{\left|y-e^{-t}x\right|^{2}}{1-e^{-2t}}}.\]
Making the change of variable \(z=\frac{y-e^{-t}x}{\sqrt{1-e^{-2t}}}\), we get
\[T_{t}f\left(x\right)=\int M_{t}^{\gamma}\left(x,y\right)f\left(y\right)d\gamma\left(y\right)=\int f\left(e^{-t}x+z\sqrt{1-e^{-2t}}\right)d\gamma\left(z\right).\]
This is sometimes called Mehler's formula.
\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup的更多相关文章
- C++ Primer : : 第十四章 : 重载运算符与类型转换之类型转换运算符和重载匹配
类型转换运算符 class SmallInt { public: SmallInt(int i = 0) : val(i) { if (i < 0 || i > 255) throw st ...
- C++ 重载操作符与转换
<C++ Primer 4th>读书笔记 重载操作符是具有特殊名称的函数:保留字 operator 后接需定义的操作符号. Sales_item operator+(const Sales ...
- LA 5135 Mining Your Own Business
求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...
- 从String类看写C++ class需要注意的地方
#include <iostream> #include <string.h> using namespace std; class String { char* m_data ...
- C++学习笔记9-运算符重载
1. 重载运营商必须有一个类类型的操作数 对于内置类型运营商.它的意义不能改变. 例如,内置整数加法运算不能被重新定义: // error: cannotredefine built-in opera ...
- 《C++ Primer》之重载操作符与转换(下)
转换与类类型 可用一个实参调用的非 explicit 构造函数定义一个隐式转换.当提供了实参类型的对象而需要一个类类型的对象时,编译器将使用该转换.这种构造函数定义了到类类型的转换.除了定义到类类型的 ...
- VK Cup 2017 - Round 2
FallDream打的AB都FFT了,只剩一个我打的C,没进前一百,之后看看马拉松复活赛有没机会呗. A. Voltage Keepsake 题目大意:n个东西,每个东西一开始有bi能源,每秒消耗ai ...
- 2019.01.14 bzoj2752: [HAOI2012]高速公路(线段树)
传送门 线段树菜题. 题意简述:给一条nnn个点的链,链有边权,支持区间修改边权,查询在一段区间内随机选择不同的起点和终点路径的期望总边权和. 思路:考虑每条边的贡献. 考虑对于一段区间[l,r][l ...
- AOAPC I: Beginning Algorithm Contests (Rujia Liu) Volume 6. Mathematical Concepts and Methods
uva 106 这题说的是 说计算 x^2 + y^2 = z^2 xyz 互质 然后计算个数和 在 N内 不在 勾股数之内的数的个数 然后去找需要的 维基百科上 看到 另 n*m*2 =b ...
随机推荐
- List<Map<String,Object>>使用Java代码遍历
List<Map<String,Object>>的结果集怎么使用Java代码遍历以获取String,Object的值: package excel; import java.u ...
- X-Forwarded-For (IIS日志记录用户真实IP)
参考:http://www.jbxue.com/article/7521.html 当IIS放在反向代理后面时,日志中的客户端ip是反向代理服务器的ip,不是用户的真实IP地址. 本文为大家介绍使用X ...
- 中兴MF667S WCDMA猫Linux拨号笔记
公司最近有个国外有个项目需要用到WCDMA猫,网上简单选型了一下决定使用ZTE的型号MF667S的猫,本以为在Linux下拨号是比较简单的(之前有两款3G猫的调试经验),估计半天能搞定,结果折腾了一周 ...
- Daily Scrum 12.14
今日完成任务: 优化了问题页面显示问题的算法:两名开发人员有CCF考试,今天没有完成任务,任务顺延到明天. 明日任务: 黎柱金 解决资源显示全部为同一个PDF的BUG 晏旭瑞 资源搜索问题 孙思权 做 ...
- Python切片
切片是啥, 可以吃么 切片肿么用哈 辣么长,记不住 切片是啥, 可以吃么 嘛,所谓切片故名思意就有选取的意思啦, 跟java里面的subString()意思差不多, 从原始的字符串中按规则提取出新的字 ...
- 解决MVC中JSON字符长度超出限制的异常
解决MVC中JSON字符长度超出限制的异常 解决方法如下: <configuration> <system.web.extensions> <scripting> ...
- 增强拉格朗日乘子法(Augmented Lagrange Method)
增强拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格 ...
- .net 微信分享功能
微信在国内目前无疑是最火的社交软件,智能手机装机必备. 微信api有java,php,Python语言的demo, 为毛没有C#的范例?兄长今天给各位带来一个.不叫哥(割)了,A股今天又暴跌[3912 ...
- css3选择器总结
1.p[class^/$/*=td]所有p标签的前面带有td/后面带有td/所有带有td的类的三种样式. 2.div:first-child/last-child/nth-child()在父元素下的第 ...
- 阿里云 centos 安装apache和php
mysql使用阿里云的rds httpd服务 1. 安装apr和apr-util 2. 安装 httpd apache.org,apr.apache.org 安装命令: ./configure --p ...