Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge

Network of Byteland consists of n servers, connected by m optical cables. Each cable connects two servers and can transmit data in both directions. Two servers of the network are especially important — they are connected to global world network and president palace network respectively.

The server connected to the president palace network has number 1, and the server connected to the global world network has number n.

Recently the company Max Traffic has decided to take control over some cables so that it could see what data is transmitted by the president palace users. Of course they want to control such set of cables, that it is impossible to download any data from the global network to the president palace without transmitting it over at least one of the cables from the set.

To put its plans into practice the company needs to buy corresponding cables from their current owners. Each cable has some cost. Since the company’s main business is not spying, but providing internet connection to home users, its management wants to make the operation a good investment. So it wants to buy such a set of cables, that cables mean cost} is minimal possible.

That is, if the company buys k cables of the total cost c, it wants to minimize the value of c/k.

Input

There are several test cases in the input. The first line of each case contains n and m (2 <= n <= 100 , 1 <= m <= 400 ). Next m lines describe cables~— each cable is described with three integer numbers: servers it connects and the cost of the cable. Cost of each cable is positive and does not exceed 107.

Any two servers are connected by at most one cable. No cable connects a server to itself. The network is guaranteed to be connected, it is possible to transmit data from any server to any other one.

There is an empty line between each cases.

Output

First output k — the number of cables to buy. After that output the cables to buy themselves. Cables are numbered starting from one in order they are given in the input file. There should an empty line between each cases.

Example

Input

6 8

1 2 3

1 3 3

2 4 2

2 5 2

3 4 2

3 5 2

5 6 3

4 6 3

4 5

1 2 2

1 3 2

2 3 1

2 4 2

3 4 2

Output

4

3 4 5 6

3

1 2 3

Source: Andrew Stankevich’s Contest #8

在Amber写的《最小割在信息学竞赛中的应用》看到的一道例题,所以就拿来做做,但是出现了不少的问题

题意:给出一个带权的无向图,每一条边有一个权值w,求将s与t分开的一个边割集,使得边割集的平均值最小。

具体的做法可以看看AMber的论文,这里有几个疑惑

1. 为什么在DFS过程中不加引用就TLE

2. 为什么在Dinic过程中不复制就会WA

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <queue>
#include <stack>
#include <algorithm>
#include <iostream> using namespace std; const double eps = 1e-6; const int INF = 0x3f3f3f3f; const int MaxN = 110; const int MaxM = 51000; typedef struct Node
{
int u,v,cap;
}Point ; typedef struct node
{
int v,next; double cap;
}edge; Point a[MaxN*4]; edge e[MaxM]; int H[MaxN],Head[MaxN],top,vis[MaxN]; int n,m; double L,R; int dbcmp(double s)
{
if(fabs(s)<eps)
{
return 0;
} return s>0?1:-1;
} void AddEdge(int u,int v,double cap)
{
e[top].v =v ;e[top].cap = cap; e[top].next = H[u]; H[u] = top++;
} bool BFS()
{
memset(vis,0,sizeof(vis)); vis[1] =1; queue<int>Q; Q.push(1); while(!Q.empty())
{
int u =Q.front(); Q.pop(); for(int i = H[u];~i;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
vis[e[i].v] = vis[u]+1; Q.push(e[i].v); if(e[i].v==n)
{
return 1;
}
}
}
} return 0;
} double DFS(int u,double cap)
{
if(u==n)
{
return cap;
}
double ans =0; for(int &i =Head[u];i!=-1; i = e[i].next) //不加引用就超时
{
if(vis[e[i].v]==vis[u]+1&&dbcmp(e[i].cap)>0)
{
double ant = DFS(e[i].v,min(cap,e[i].cap)); if(ant)
{
e[i].cap-=ant; e[i^1].cap+=ant; return ant;
}
}
}
return 0;
} double Dinic()//求最小割
{
double ans = 0; while(BFS())
{
memcpy(Head,H,sizeof(H));//不复制就WA
while(double ant = DFS(1,INF))
ans+=ant;
}
return ans;
} double Build(double s)
{
top =0; memset(H,-1,sizeof(H)); double ans = 0; for(int i=1;i<=m;i++)
{
if(a[i].cap>s)
{
AddEdge(a[i].u,a[i].v,a[i].cap-s); AddEdge(a[i].v,a[i].u,a[i].cap-s);
}
else ans += (a[i].cap-s);
} return ans+Dinic();
} double Search()
{
double mid; while(dbcmp(R-L)>0)
{
mid = (L+R)/2; double ant = Build(mid); if(dbcmp(ant)>0)
{ L = mid;
}
else
{
R = mid;
}
}
return mid;
} void dfs(int u)
{
vis[u] = 1; for(int i = H[u];i!=-1;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
dfs(e[i].v);
}
}
} int main()
{
int z = 0; while(~scanf("%d %d",&n,&m))
{
L = 0,R = 0;
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].cap); R+=a[i].cap;
} double ans = Search(); Build(ans); memset(vis,0,sizeof(vis)); dfs(1); int num = 0; for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
num++;
}
} if(z++)
{
printf("\n");
} printf("%d\n",num); bool flag = false; for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
if(flag)
{
printf(" ");
}
else flag= true; printf("%d",i);
}
}
printf("\n");
}
return 0;
}

Network Wars-ZOJ2676最小割+01规划的更多相关文章

  1. POJ 1966 Cable TV Network 【经典最小割问题】

    Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...

  2. CodeChef - RIN 最小割应用 规划问题

    题意:给定\(n\)门课和\(m\)个学期,每门课在每个学期有不同的得分,需要选定一个学期去完成,但存在约束条件,共有\(k\)对课程需要\(a\)在\(b\)开始学前学会,求最大得分(原问题是求最高 ...

  3. UVA1660 电视网络 Cable TV Network[拆点+最小割]

    题意翻译 题目大意: 给定一个n(n <= 50)个点的无向图,求它的点联通度.即最少删除多少个点,使得图不连通. 解析 网络瘤拆点最小割. 定理 最大流\(=\)最小割 感性地理解(口胡)一下 ...

  4. POJ 1966 Cable TV Network (点连通度)【最小割】

    <题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见   >>> 本题是求点连通度, ...

  5. ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)

    [题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...

  6. zoj 2676 Network Wars 0-1分数规划+最小割

    题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...

  7. HDU 2676 Network Wars 01分数规划,最小割 难度:4

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...

  8. zoj2676 Network Wars(0-1分数规划,最大流模板)

    Network Wars 07年胡伯涛的论文上的题:http://wenku.baidu.com/view/87ecda38376baf1ffc4fad25.html 代码: #include < ...

  9. zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)

    /* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...

随机推荐

  1. php 获取中文长度 截取中文字符串

    #获取中文长度mb_strlen($str,$encoding); #截取中文字符串 mb_substr(str,start,length,encoding);

  2. ORM系列之二:EF(1)

    目录 1. EF是什么 2. 如何获取EF 3. EF有哪些主要模式 EF是什么 EF全称为Entity Framework,是微软推荐的一种数据库访问技术,属于重量级的ORM框架,功能非常强大,目前 ...

  3. method

  4. JMeter学习-023-JMeter 命令行(非GUI)模式详解(一)-执行、输出结果及日志、简单分布执行脚本

    前文 讲述了JMeter分布式运行脚本,以更好的达到预设的性能测试(并发)场景.同时,在前文的第一章节中也提到了 JMeter 命令行(非GUI)模式,那么此文就继续前文,针对 JMeter 的命令行 ...

  5. 深度学习笔记(六)finetune

    转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我 ...

  6. 动画黄金搭档:CADisplayLink&CAShapeLayer

    我们在开发中有时会遇到一些看似非常复杂的动画,不知该如何下手,今天的这篇文章中我会讲到如何利用CADisplayLink和CAShapeLayer来构建一些复杂的动画,希望能在你下次构建动画中,给你一 ...

  7. Android Studio中获取查看签名SHA1证书指纹数据或MD5的方法

    原来在Eclipse中获取SHA1或者MD5,在IDE界面上就可以查找到. 切换到Android Studio后,如何查看呢?找了半天没找到.那就老办法命令行. 第一步.打开Android Studi ...

  8. 关于C#垃圾回收

    1.C#垃圾收集器(GC)原理 在C#中托管的资源是无法由程序员管理的,创建销毁都要通过GC来执行.但垃圾收集器有个特点,它是懒惰的,它并不会在变量出了作用域和生命期后立即回收,而是在它认为适当的时候 ...

  9. Lua参数绑定函数实现方法

    背景 对于某一个函数, 其被调用多次, 每次调用的入参都是一致的. 不想每次都填写参数, 如果能够定义一个新的函数, 将参数跟此函数绑定就棒哒哒了. local function pirntfunc( ...

  10. Hadoop中Combiner的使用

    注:转载自http://blog.csdn.net/ipolaris/article/details/8723782 在MapReduce中,当map生成的数据过大时,带宽就成了瓶颈,怎样精简压缩传给 ...