Network Wars-ZOJ2676最小割+01规划
| Time Limit: 5 Seconds | Memory Limit: 32768 KB | Special Judge |
|---|
Network of Byteland consists of n servers, connected by m optical cables. Each cable connects two servers and can transmit data in both directions. Two servers of the network are especially important — they are connected to global world network and president palace network respectively.
The server connected to the president palace network has number 1, and the server connected to the global world network has number n.
Recently the company Max Traffic has decided to take control over some cables so that it could see what data is transmitted by the president palace users. Of course they want to control such set of cables, that it is impossible to download any data from the global network to the president palace without transmitting it over at least one of the cables from the set.
To put its plans into practice the company needs to buy corresponding cables from their current owners. Each cable has some cost. Since the company’s main business is not spying, but providing internet connection to home users, its management wants to make the operation a good investment. So it wants to buy such a set of cables, that cables mean cost} is minimal possible.
That is, if the company buys k cables of the total cost c, it wants to minimize the value of c/k.
Input
There are several test cases in the input. The first line of each case contains n and m (2 <= n <= 100 , 1 <= m <= 400 ). Next m lines describe cables~— each cable is described with three integer numbers: servers it connects and the cost of the cable. Cost of each cable is positive and does not exceed 107.
Any two servers are connected by at most one cable. No cable connects a server to itself. The network is guaranteed to be connected, it is possible to transmit data from any server to any other one.
There is an empty line between each cases.
Output
First output k — the number of cables to buy. After that output the cables to buy themselves. Cables are numbered starting from one in order they are given in the input file. There should an empty line between each cases.
Example
Input
6 8
1 2 3
1 3 3
2 4 2
2 5 2
3 4 2
3 5 2
5 6 3
4 6 3
4 5
1 2 2
1 3 2
2 3 1
2 4 2
3 4 2
Output
4
3 4 5 6
3
1 2 3
Source: Andrew Stankevich’s Contest #8
在Amber写的《最小割在信息学竞赛中的应用》看到的一道例题,所以就拿来做做,但是出现了不少的问题
题意:给出一个带权的无向图,每一条边有一个权值w,求将s与t分开的一个边割集,使得边割集的平均值最小。
具体的做法可以看看AMber的论文,这里有几个疑惑
1. 为什么在DFS过程中不加引用就TLE
2. 为什么在Dinic过程中不复制就会WA
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <queue>
#include <stack>
#include <algorithm>
#include <iostream>
using namespace std;
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
const int MaxN = 110;
const int MaxM = 51000;
typedef struct Node
{
int u,v,cap;
}Point ;
typedef struct node
{
int v,next;
double cap;
}edge;
Point a[MaxN*4];
edge e[MaxM];
int H[MaxN],Head[MaxN],top,vis[MaxN];
int n,m;
double L,R;
int dbcmp(double s)
{
if(fabs(s)<eps)
{
return 0;
}
return s>0?1:-1;
}
void AddEdge(int u,int v,double cap)
{
e[top].v =v ;e[top].cap = cap;
e[top].next = H[u]; H[u] = top++;
}
bool BFS()
{
memset(vis,0,sizeof(vis));
vis[1] =1;
queue<int>Q;
Q.push(1);
while(!Q.empty())
{
int u =Q.front();
Q.pop();
for(int i = H[u];~i;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
vis[e[i].v] = vis[u]+1;
Q.push(e[i].v);
if(e[i].v==n)
{
return 1;
}
}
}
}
return 0;
}
double DFS(int u,double cap)
{
if(u==n)
{
return cap;
}
double ans =0;
for(int &i =Head[u];i!=-1; i = e[i].next) //不加引用就超时
{
if(vis[e[i].v]==vis[u]+1&&dbcmp(e[i].cap)>0)
{
double ant = DFS(e[i].v,min(cap,e[i].cap));
if(ant)
{
e[i].cap-=ant;
e[i^1].cap+=ant;
return ant;
}
}
}
return 0;
}
double Dinic()//求最小割
{
double ans = 0;
while(BFS())
{
memcpy(Head,H,sizeof(H));//不复制就WA
while(double ant = DFS(1,INF))
ans+=ant;
}
return ans;
}
double Build(double s)
{
top =0;
memset(H,-1,sizeof(H));
double ans = 0;
for(int i=1;i<=m;i++)
{
if(a[i].cap>s)
{
AddEdge(a[i].u,a[i].v,a[i].cap-s);
AddEdge(a[i].v,a[i].u,a[i].cap-s);
}
else ans += (a[i].cap-s);
}
return ans+Dinic();
}
double Search()
{
double mid;
while(dbcmp(R-L)>0)
{
mid = (L+R)/2;
double ant = Build(mid);
if(dbcmp(ant)>0)
{
L = mid;
}
else
{
R = mid;
}
}
return mid;
}
void dfs(int u)
{
vis[u] = 1;
for(int i = H[u];i!=-1;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
dfs(e[i].v);
}
}
}
int main()
{
int z = 0;
while(~scanf("%d %d",&n,&m))
{
L = 0,R = 0;
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].cap);
R+=a[i].cap;
}
double ans = Search();
Build(ans);
memset(vis,0,sizeof(vis));
dfs(1);
int num = 0;
for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
num++;
}
}
if(z++)
{
printf("\n");
}
printf("%d\n",num);
bool flag = false;
for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
if(flag)
{
printf(" ");
}
else flag= true;
printf("%d",i);
}
}
printf("\n");
}
return 0;
}
Network Wars-ZOJ2676最小割+01规划的更多相关文章
- POJ 1966 Cable TV Network 【经典最小割问题】
Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...
- CodeChef - RIN 最小割应用 规划问题
题意:给定\(n\)门课和\(m\)个学期,每门课在每个学期有不同的得分,需要选定一个学期去完成,但存在约束条件,共有\(k\)对课程需要\(a\)在\(b\)开始学前学会,求最大得分(原问题是求最高 ...
- UVA1660 电视网络 Cable TV Network[拆点+最小割]
题意翻译 题目大意: 给定一个n(n <= 50)个点的无向图,求它的点联通度.即最少删除多少个点,使得图不连通. 解析 网络瘤拆点最小割. 定理 最大流\(=\)最小割 感性地理解(口胡)一下 ...
- POJ 1966 Cable TV Network (点连通度)【最小割】
<题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见 >>> 本题是求点连通度, ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- zoj 2676 Network Wars 0-1分数规划+最小割
题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...
- HDU 2676 Network Wars 01分数规划,最小割 难度:4
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...
- zoj2676 Network Wars(0-1分数规划,最大流模板)
Network Wars 07年胡伯涛的论文上的题:http://wenku.baidu.com/view/87ecda38376baf1ffc4fad25.html 代码: #include < ...
- zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)
/* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...
随机推荐
- servlet中service() 和doGet() 、doPost() 学习笔记
Sevlet接口定义如下: 与Sevlet接口相关的结构图: service() 方法是 Servlet 的核心.每当一个客户请求一个HttpServlet 对象,该对象的service() 方法就要 ...
- MAC破解软件
作为一个iOS程序开发的工程师,我们需要的是那些辅助的利器 但是这些利器确实需要高价购买的 reveal系统层级关系 Charles网络抓包破解 蓝灯(FQ必备) 小黑冒(搜索必备) Cornerst ...
- 带阈值的平滑l0范数加速稀疏恢复——同名英文论文翻译
原文链接:Thresholded Smoothed l0 Norm for Accelerated Sparse Recovery http://ieeexplore.ieee.org/documen ...
- JAVASE02-Unit08: 文本数据IO操作 、 异常处理
Unit08: 文本数据IO操作 . 异常处理 * java.io.ObjectOutputStream * 对象输出流,作用是进行对象序列化 package day08; import java.i ...
- 移动应用抓包调试利器Charles
转载:http://www.jianshu.com/p/68684780c1b0 一.Charles是什么? Charles是在 Mac或Windows下常用的http协议网络包截取工具,是一款屌的不 ...
- 【转载】LoadRunner添加windows多台压力机
添加多台压力机 1.前置条件 1)保证压力机上都安装了loadrunner Agent,并启动,状态栏中会有小卫星. 2)添加的压力机与controller所在机器是否在同一个网段,建议关闭防火墙.在 ...
- ios - kvo观察者示例
首先创建Person分类 #import <Foundation/Foundation.h> @interface Person : NSObject @property (nonatom ...
- Leetcode: Convex Polygon
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- python执行线程方法
转自: http://www.jb51.net/article/71908.htm 由于python线程没有提供abort方法,所以我们需要自己想办法解决此问题,面对这一问题,小编帮大家解决phtho ...
- c#学习 流程控制语句
语句是啥? 语句就是程序的基本结构.程序是一个人,语句就是人的身体.而写程序的人就是上帝造人的过程. break在swich语句中很严谨 using System; public class Grad ...