六、(本题10分)  设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))=1$, 证明: 存在 $n$ 阶复方阵 $B$, 使得 $g(B)=A$.

证明  设 $P$ 为非异阵, 使得 $$P^{-1}AP=J=\mathrm{diag}\{J_{r_1}(\lambda_1),\cdots,J_{r_k}(\lambda_k)\}$$ 为 Jordan 标准型, 我们先对 Jordan 块来证明结论. 任取多项式方程 $g(\lambda)-\lambda_i=0$ 的根 $\mu_i$, 即 $g(\mu_i)=\lambda_i$, 从而 $f(g(\mu_i))=f(\lambda_i)=0$. 由 $f(g(\lambda))$ 与 $g'(\lambda)$ 互素可知它们无共公根, 从而 $g'(\mu_i)\neq 0$. 经计算可得 (参考教材第328页第4行) $$g(J_{r_i}(\mu_i))=\begin{pmatrix} g(\mu_i) & g'(\mu_i) & \dfrac{1}{2!}g^{(2)}(\mu_i) & \cdots & \dfrac{1}{(r_i-1)!}g^{(r_i-1)}(\mu_i)\\  & g(\mu_i) & g'(\mu_i) & \cdots & \dfrac{1}{(r_i-2)!}g^{(r_i-2)}(\mu_i)\\ & & g(\mu_i) & \cdots & \dfrac{1}{(r_i-3)!}g^{(r_i-3)}(\mu_i)\\ & & & \ddots & \vdots \\ & & & & g(\mu_i) \end{pmatrix},$$ 于是 $g(J_{r_i}(\mu_i))$ 的特征值全为 $\lambda_i$, 其几何重数等于 $r_i-r(g(J_{r_i}(\mu_i))-\lambda_iI)=r_i-(r_i-1)=1$. 因此 $g(J_{r_i}(\mu_i))$ 的 Jordan 标准型中只有一个 Jordan 块, 即 $g(J_{r_i}(\mu_i))$ 相似于 $J_{r_i}(\lambda_i)$. 设 $Q_i$ 为非异阵, 使得 $J_{r_i}(\lambda_i)=Q_ig(J_{r_i}(\mu_i))Q_i^{-1}=g(Q_iJ_{r_i}(\mu_i)Q_i^{-1})$, 故结论对 Jordan 块成立. 令 $$Q=\mathrm{diag}\{Q_1,\cdots,Q_k\},\,\,\,\,C=\mathrm{diag}\{J_{r_1}(\mu_1),\cdots,J_{r_k}(\mu_k)\},$$ 则 $$J=\mathrm{diag}\{J_{r_1}(\lambda_1),\cdots,J_{r_k}(\lambda_k)\}=Qg(C)Q^{-1}=g(QCQ^{-1}),$$ 故结论对 Jordan 标准型也成立. 最后我们有 $$A=PJP^{-1}=Pg(QCQ^{-1})P^{-1}=g(PQCQ^{-1}P^{-1}),$$ 令 $B=PQCQ^{-1}P^{-1}$ 即得 $A=g(B)$, 故结论对一般的矩阵也成立.  $\Box$

  本题是白皮书例7.44的自然推广, 也和15级高代II思考题第14题有着完全类似的证明.

复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答的更多相关文章

  1. 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...

  2. 复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答

    六.(本题10分)   设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似. 证明  由 $A$ 是幂零阵可知, $A$ ...

  3. 复旦大学2018--2019学年第二学期(18级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $A$ 为 $n$ 阶实对称阵, 证明: $A$ 有 $n$ 个不同的特征值当且仅当对 $A$ 的任一特征值 $\lambda_0$ 及对应的特征向量 $\alpha$, 矩 ...

  4. 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答

    八.(本题10分)  设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析  证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...

  5. 复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答

    六.(本题10分)  设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...

  6. 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答

    八.(本题10分)  设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...

  7. 复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答

    七.(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\),  \(A^{-1}BA\) 均为对角阵的充分必要条件是 \ ...

  8. 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...

  9. 复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第七大题解答

    七.(本题10分)  设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义 ...

随机推荐

  1. Quartz2D 编程指南(一)概览、图形上下文、路径、颜色与颜色空间

    概览 图形上下文 路径 颜色与颜色空间 变换 图案 阴影 渐变 透明层 Quartz 2D 中的数据管理 位图与图像遮罩 CoreGraphics 绘制 Layer 0.说明 本篇博客主要是对官方文档 ...

  2. Hibernate操作指南-搭建一个简单的示例(基于原生API和注解)

  3. Xcode 运行cocos2dx弹出内部错误对话框(Internal Error)

    cocos2dx未捕获的异常升高.选择"继续"继续运行在一个不一致的状态.选择"崩溃"停止应用和崩溃报告一个错误文件. 莫名其妙,代码没有报错,运行时却弹出(内 ...

  4. delphi 环境问题

    这个编译时的警告该如何理解?[Warning] Unit 'Unit101' implicitly imported into package 'Package202'------解决方案------ ...

  5. Angular通过CORS实现跨域方案

    以前有一篇很老的文章网上转了很多,包括现在如果你百度"跨域"这个关键字,前几个推荐的都是"Javascript跨域总结与解决方案".看了一下感觉手段有点陈旧了, ...

  6. [总结] I/O输入,输出

    I/O输入,输出第一:先判断到底是输入还是输出,站在程序的立场第二:判断是传递字节,还是字符,决定管道粗细,字节流是最基本的数据输出管道.字符类型管道专门用来传送文本数据.Java流的四大父类:1.字 ...

  7. github android

    作者:ruijun 链接:https://www.zhihu.com/question/37160415/answer/79569042 来源:知乎 著作权归作者所有,转载请联系作者获得授权. ### ...

  8. LA 4255 UVa1423 拓扑排序

    题目给出的是Sij的正负号,Sij=ai+...+aj,所以令前缀和Bi=a0+a1+..+ai,a0=0,B0=0,则有Sij=Bj-B(i-1): 由此构造出Bi的拓扑序列,只要每个拓扑序列相邻的 ...

  9. web应用安全防御100技 好书再次阅读, 变的只是表象,被概念迷惑的时候还是静下心来回顾本质

    如何进行web应用安全防御,是每个web安全从业者都会被问到的问题,非常不好回答,容易过于肤浅或流于理论,要阐明清楚,答案就是一本书的长度.而本文要介绍一本能很好回答这个问题的优秀书籍——<we ...

  10. DataGrid获取当前行某列值

    前言: 本文将给大家介绍一下, 在ASP.NET MVC环境下,如何利用Jquery MiniUI(一个专业WebUI控件库)来获取Datagrid中的值,官网没有涉及到的内容:如何获取当前行某一列的 ...