在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责资源的分配,而NodeManager则负责资源的供给和隔离。ResourceManager将某个NodeManager上资源分配给任务(这就是所谓的“资源调度”)后,NodeManager需按照要求为任务提供相应的资源,甚至保证这些资源应具有独占性,为任务运行提供基础的保证,这就是所谓的资源隔离。

基于以上考虑,YARN允许用户配置每个节点上可用的物理内存资源,注意,这里是“可用的”,因为一个节点上的内存会被若干个服务共享,比如一部分给YARN,一部分给HDFS,一部分给HBase等,YARN配置的只是自己可以使用的,配置参数如下:

(1)yarn.nodemanager.resource.memory-mb

表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。

(2)yarn.nodemanager.vmem-pmem-ratio

任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。

(3) yarn.nodemanager.pmem-check-enabled

是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。

(4) yarn.nodemanager.vmem-check-enabled

是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。

(5)yarn.scheduler.minimum-allocation-mb

单个任务可申请的最少物理内存量,默认是1024(MB),如果一个任务申请的物理内存量少于该值,则该对应的值改为这个数。

(6)yarn.scheduler.maximum-allocation-mb

单个任务可申请的最多物理内存量,默认是8192(MB)。

默认情况下,YARN采用了线程监控的方法判断任务是否超量使用内存,一旦发现超量,则直接将其杀死。由于Cgroups对内存的控制缺乏灵活性(即任务任何时刻不能超过内存上限,如果超过,则直接将其杀死或者报OOM),而Java进程在创建瞬间内存将翻倍,之后骤降到正常值,这种情况下,采用线程监控的方式更加灵活(当发现进程树内存瞬间翻倍超过设定值时,可认为是正常现象,不会将任务杀死),因此YARN未提供Cgroups内存隔离机制。

可以使用如下命令在提交任务时动态设置:

hadoop jar <jarName> -D mapreduce.reduce.memory.mb=5120

e.g.

[hadoop@cMaster hadoop-2.5.2]$ ./bin/hadoop jar /home/hadoop/jar-output/TestLoop-1024M.jar -D mapreduce.map.memory.mb=5120 AESEnTest 1024 1 1

后面的1024及两个1均为jar的输入参数。

Hadoop2.5.2搭建好之后,运行写好的MapReduce程序出现如下问题:

Container [pid=24156,containerID=container_1427332071311_0019_01_000002] is running beyond physical memory limits. Current usage: 2.1 GB of 2 GB physical memory used; 2.7 GB of 4.2 GB virtual memory used. Killing container.
Dump of the process-tree for container_1427332071311_0019_01_000002 :
|- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
|- 24156 2787 24156 24156 (bash) 0 0 108646400 296 /bin/bash -c /usr/java/jdk1.7.0_45/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx2048m -Djava.io.tmpdir=/home/hadoop/hadoop-2.5.2/hadoop-hadoop/nm-local-dir/usercache/hadoop/appcache/application_1427332071311_0019/container_1427332071311_0019_01_000002/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/home/hadoop/hadoop-2.5.2/logs/userlogs/application_1427332071311_0019/container_1427332071311_0019_01_000002 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA org.apache.hadoop.mapred.YarnChild 192.168.199.93 33497 attempt_1427332071311_0019_m_000000_0 2 1>/home/hadoop/hadoop-2.5.2/logs/userlogs/application_1427332071311_0019/containe...

分析:

根据前面所述的内存配置相关理论知识,我们可以总结如下:

(RM, Resource Manager; NM, Node Manager; AM, Application Manager)

RM内存资源配置——两个参数(yarn-site.xml)

<property>
<description>The minimum allocation for every container request at the RM,
in MBs. Memory requests lower than this won't take effect,
and the specified value will get allocated at minimum.</description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>

<property>
<description>The maximum allocation for every container request at the RM,
in MBs. Memory requests higher than this won't take effect,
and will get capped to this value.</description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>8192</value>
</property>

它们表示单个容器可以申请的最小与最大内存。

NM(yarn-site.xml)

<property>
<description>Amount of physical memory, in MB, that can be allocated
for containers.</description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>8192</value>
</property>

<property>
<description>Ratio between virtual memory to physical memory when
setting memory limits for containers. Container allocations are
expressed in terms of physical memory, and virtual memory usage
is allowed to exceed this allocation by this ratio.
</description>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>

前者表示单个节点可用的最大内存,RM中的两个值都不应该超过该值。

后者表示虚拟内存率,即占task所用内存的百分比,默认为2.1.

AM(mapred-site.xml)

mapreduce.map.memory.mb

mapreduce.reduce.memory.mb

指定map和reduce task的内存大小,该值应该在RM的最大最小container之间。如果不设置,则默认用以下规则进行计算:max{MIN_Container_Size,(Total Available RAM/containers)}。

一般地,reduce设置为map的两倍。

AM的其他参数设置:

mapreduce.map.java.opts

mapreduce.reduce.java.opts

这两个参数是伪需要运行JVM程序(java,scala等)准备,通过这两个参数可以向JVM中传递参数,与内存有关的是-Xmx, -Xms等选项,数值的大小应该要再AM中的map.mb和reduce.mb之间。

对如上问题,我选择使用以下方式来解决:(根据提交的job动态设置mapreduce.map.memory.mb的值)

[hadoop@cMaster hadoop-2.5.2]$ ./bin/hadoop jar /home/hadoop/jar-output/TestLoop-1024M.jar -D mapreduce.map.memory.mb=5120 AESEnTest 1024 1 1

参考资料:

https://altiscale.zendesk.com/hc/en-us/articles/200801519-Configuring-Memory-for-Mappers-and-Reducers-in-Hadoop-2

http://stackoverflow.com/questions/21005643/container-is-running-beyond-memory-limits

http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-memory-cpu-scheduling/

Hadoop YARN中内存的设置的更多相关文章

  1. hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used

    实际遇到的真实问题,解决方法: 1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1) 2.调整map与reduce的在AM中的大小大于y ...

  2. JVM中内存的设置和分配(最大内存,总内存,剩余内存的区别)

    1.设置分配的内存大小 -vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:MaxPermSize=128M -vmargs 说明后面是VM的参数,所以后面的 ...

  3. hadoop部署中遇到ssh设置的问题

    尽管hadoop和一些培训视频课程上讲分布式部署比较详细,但是在部署时仍遇到了一些小问题,在此mark一下: 1.linux的namenode主机上安装了ssh,也启动了ssh,并且执行了: /etc ...

  4. MapReduce扩展:应用程序如何运行于Hadoop Yarn之上

    1. 背景   “应用程序运行于Hadoop Yarn之上”的需求来源于微博运维数据平台中的调度系统,即调度系统中的任务需要运行于Hadoop Yarn之上.这里的应用程序可以简单理解为一个普通的进程 ...

  5. Hadoop Yarn内存资源隔离实现原理——基于线程监控的内存隔离方案

    注:本文以hadoop-2.5.0-cdh5.3.2为例进行说明.   Hadoop Yarn的资源隔离是指为运行着不同任务的“Container”提供可独立使用的计算资源,以避免它们之间相互干扰.目 ...

  6. 【原创】大叔经验分享(21)yarn中查看每个应用实时占用的内存和cpu资源

    在yarn中的application详情页面 http://resourcemanager/cluster/app/$applicationId 或者通过application命令 yarn appl ...

  7. [转载]windows任务管理器中的工作设置内存,内存专用工作集,提交大小详解

    windows任务管理器中的工作设置内存,内存专用工作集,提交大小详解 http://shashanzhao.com/archives/832.html 虽然是中文字,但是理解起来还是很困难,什么叫工 ...

  8. Hadoop YARN 100-1知识点

    0 YARN中实体 资源管理者(resource manager, RM) 长时间运行的守护进程,负责管理集群上资源的使用 节点管理者(node manager, NM) 长时间运行的守护进程,在集群 ...

  9. YARN的内存和CPU配置

    时间 2015-06-05 00:00:00  JavaChen's Blog 原文  http://blog.javachen.com/2015/06/05/yarn-memory-and-cpu- ...

随机推荐

  1. C#快捷键

    home:光标所在这一行的最前面 end:光标所在这一行的最后面 pg up:光标所在这一页最前一行的前面 pg dn:光标所在这一页最后一行的最后 shift+home:光标所在这一行之前的所有代码 ...

  2. Unity3D Layout 快捷键

    我的需求是开发的时候一种布局,运行的时候一种布局,Unity3D 选项中的自定义快捷键的太少,只能另想办法.Google 之后,找到解决方法:Editor layout hotkeys? 1.创建菜单 ...

  3. iPhone5停留在语音的界面,提示按三次home键,无法继续下去

    不知道之前用户是怎么操作的,可能是刷机或恢复出厂设置.穷人,没用玩过iPhone. 根据提示关键词,网上搜索,发现只需要按三次home,三次锁屏,三次锁屏,最后再三次home就可以了. 试了两次,还真 ...

  4. jQuery刷新包含的<jsp:include>页面

    jQuery刷新包含页面 JQuery刷新包含页面,以下两种形式均可: <%@include file="../include/header.jsp" %>   < ...

  5. [转]用CSS给SVG <use>的内容添加样式

    来源:http://www.w3cplus.com/svg/styling-svg-use-content-css.html?utm_source=tuicool&utm_medium=ref ...

  6. css实现强制不换行/自动换行/强制换行

    在我们日常的编码中经常会遇到这段文字不可以换行,或者自动换行的需求.虽然这个功能在我们平时很常见但是我相信大家一定不会可以的去记住它吧(至少小月是很懒惰的从来是用什么查什么 ♦ 嘻嘻...).今天我们 ...

  7. Decorate Pattern 装饰者模式

    装饰模式的定义: 动态地将责任附加到对象向,若要扩展功能,装饰模式提供了比继承更有弹性的替代方案. 遵循的设计原则是开闭原则,也是对扩展开放,对修改关闭. 下面是类图 示例代码 /** *定义被装饰者 ...

  8. The different of mouseover and mouseenter

    l论事件onmouseover 和 onmouseenter:同类比较onmouseout 和 onmouseleave; 使用onmouseover时,鼠标除了被设置事件的元素,还会触发其子元素: ...

  9. 1472. Martian Army

    http://acm.timus.ru/problem.aspx?space=1&num=1472 题目大意: 一颗树,根节点(1) 的值为 1.0,所有叶子节点的值为 0.0 ,其他节点值任 ...

  10. 简单研究Android View绘制三 布局过程

    2015-07-28 17:29:19 这一篇主要看看布局过程 一.布局过程肯定要不可避免的涉及到layout()和onLayout()方法,这两个方法都是定义在View.java中,源码如下: /* ...