Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理
1.3. 1.失焦检测。 衡量画面模糊的主要方法就是梯度的统计特征,通常梯度值越高,画面的边缘信息越丰富,图像越清晰。1
1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的
1.2. Remark:
1)肉眼可以分辨以上五幅图像的质量排名为:img42 > img81 > img77 > img29 > img183
2)与主观感知一致的算法有:Brenner、Tenengrad、SMD、SMD2、Energy、Entropy、EAV、JPEG、JPEG2
3)Variance、Vollath算法所得数据非常接近,无法分辨出图像质量。
4)Laplacian在判断img29 和 img183的时候出现失误,这两个图片的质量都非常差
Remark:
1)肉眼可以分辨以上图片的质量排名为:img20 > img228 > img56 > img152 > img23 > img215
2)与主观感知一致的算法有:Brenner、Tenengrad、Laplacian、SMD2、Energy、JPEG、JPEG2
3)Vollat、Entropy算法失误比较多。
4)SMD、EAV在判断img20和 img228的时候出现失误,这两个图片质量都非常好,肉眼有时候很难分辨,因此这种失误在可以接受的范围。
5)Variance在判断img23和 img215的时候出现失误,这两个图片质量都非常差。
1.3. 1.失焦检测。 衡量画面模糊的主要方法就是梯度的统计特征,通常梯度值越高,画面的边缘信息越丰富,图像越清晰。
失焦的主要表现就是画面模糊,衡量画面模糊的主要方法就是梯度的统计特征,通常梯度值越高,画面的边缘信息越丰富,图像越清晰。需要注意的是梯度信息与每一个视频本身的特点有关系,如果画面中本身的纹理就很少,即使不失焦,梯度统计信息也会很少,对监控设备失焦检测需要人工参与的标定过程,由人告诉计算机某个设备正常情况下的纹理信息是怎样的。
1.4. 利用边缘检测 ,模糊图片边缘会较少
例如下面几张图,星星越少压缩率越高,图片大小越小的同时图片质量越差。你可以看到下图中,星星少的图片相对的边缘会更加模糊。当然,在一定的压缩率下肉眼是无法直接发觉画质的降低的(例如三星和四星)。
1.5. 通过dct比较。Dct分离出的低频信号比较
模糊图片细节少,所以dct更低。。
1.6. 参考资料
无参考图像的清晰度评价方法 - 凌风探梅的专栏 - 博客频道 - CSDN.NET.html
视频清晰度、色偏以及亮度异常检测 - lengwuqin的专栏 - 博客频道 - CSDN.NET.html
摄像机失焦检测思路 - lien0906的专栏 - 博客频道 - CSDN.NET.html
图像信号缺失或清晰度的检测算法 - qingkongyeyue的博客 - 博客频道 - CSDN.NET.html
作者:: 绰号:老哇的爪子 ( 全名::Attilax Akbar Al Rapanui 阿提拉克斯 阿克巴 阿尔 拉帕努伊 )
汉字名:艾提拉(艾龙), EMAIL:1466519819@qq.com
转载请注明来源: http://www.cnblogs.com/attilax/
Atiend
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理的更多相关文章
- Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 ...
- Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结
Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结 1.1. 五中滤镜的分别效果..1 1.2. 基于肤色的图片分类1 1.3. 性能提升2 1.4. --co ...
- OpenCV 图像清晰度评价(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上.这时候物体的成像比较清晰,图像细节信息丰富. 相 ...
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
- OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...
- 14FPGA综设之图像边沿检测的sobel算法
连续学习FPGA基础课程接近一个月了,迎来第一个有难度的综合设计,图像的边沿检测算法sobel,用verilog代码实现算法功能. 一设计功能 (一设计要求) (二系统框图) 根据上面的系统,Veri ...
- Atitit 图像金字塔原理与概率 attilax的理解总结qb23
Atitit 图像金字塔原理与概率 attilax的理解总结qb23 1.1. 高斯金字塔 ( Gaussianpyramid): 拉普拉斯金字塔 (Laplacianpyramid):1 1.2 ...
- 机器视觉及图像处理系列之二(C++,VS2015)——图像级的人脸识别(1)
接上一篇,一切顺利的话,你从github上clone下来的整个工程应该已经成功编译并生成dll和exe文件了:同时,ImageMagic程序亦能够打开并编辑图像了,如此,证明接下来的操练你不会有任何障 ...
- OpenCV 图像清晰度(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上.这时候物体的成像比较清晰,图像细节信息丰富. 相 ...
随机推荐
- AVL-tree
//avl.h#ifndef __AVL_H__#define __AVL_H__ typedef int KEY_TYPE; /* struct */typedef struct AVL{ KEY_ ...
- Mysql主从架构的复制原理及配置详解
一.简述Mysql复制 Mysql复制是通过将mysql的某一台主机的数据复制到其他主机(slaves)上,并且在slaves上重新执行一遍来实现.主服务器每次数据操作都会将更新记录到二进制日志文件, ...
- AOP实现原理
Spring 为解耦而生,其中AOP(面向切面编程)是很浓重的一笔. 本文来探讨一下AOP实现的原理. 一. 概述 代理模式是常用的java设计模式,他的特征是代理类与委托类有同样的接口,代理类主要负 ...
- 通过inflate获取布局,设置layoutparams无效
给ll——addtiem当设置layoutparams无效时,试着修改上一个布局的属性
- BZOJ2683 简单题(CDQ分治)
传送门 之前听别人说CDQ分治不难学,今天才知道果真如此.之前一直为自己想不到CDQ的方法二很不爽,今天终于是想出来了一道了,太弱-- cdq分治主要就是把整段区间分成两半,然后用左区间的值去更新右区 ...
- Linux初记
ctrl+u可以在shell下删除行,如果此键不起作用,就试试ctrl+x ctrl+z可以将程序挂起,不会终止程序,但可以将程序挂起. 通过fg命令可再把此作业切换到前台 cp命令的目标文件如果是一 ...
- linux中sed的用法【转】
sed命令行格式为: sed [-nefri] ‘command’ 输入文本/文件 常用选项: -n∶取消默认的输出,使用安静(silent)模式.在一般 sed 的 ...
- Win7下Eclipse中文字体太小
http://www.cnblogs.com/newdon318/archive/2012/03/23/2413340.html 最近新装了Win7,打开eclipse3.7中文字体很小,简直难以辨认 ...
- Texture2D.GetPixelBilinear(float u, float v)的使用,官方例子注释
using UnityEngine; using System.Collections; public class TEST : MonoBehaviour { public Texture2D so ...
- ArcEngine 无法嵌入互操作类型
说明: 在.net 4.0中,声明 IPoint point = new PointClass();会出现下面这个错误 错误 2 类型"ESRI.ArcGIS.Geometry.PointC ...