传送门

第一眼看去:好难

第二眼:不就是个裸的最大权闭合子图么……

我们从源点向所有用户连边,容量为收益,用户向自己的中转站连边,容量为INF,中转站向汇点连边,容量为费用

那么总收益-最小割就是答案

为啥呢?因为割掉用户的边相当于不要它的利益,是损失,割掉中转站的边相当于选了它,要付出代价,也是损失

不是很明白的可以去看看这道题->这里

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int head[N],Next[M],ver[M],edge[M],tot=;
int dep[N],cur[N],n,m,s,t,sum;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
bool bfs(){
memset(dep,-,sizeof(dep));
while(!q.empty()) q.pop();
for(int i=s;i<=t;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i]){
dep[v]=dep[u]+,q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int limit){
if(u==t||!limit) return limit;
int flow=,f;
for(int i=cur[u];i;i=Next[i]){
int v=ver[i];cur[u]=i;
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
if(!flow) dep[u]=-;
return flow;
}
int dinic(){
int flow=;
while(bfs()) flow+=dfs(s,inf);
return flow;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read(),s=,t=n+m+;
for(int i=,x;i<=n;++i) x=read(),add(i+m,t,x);
for(int i=;i<=m;++i){
int x=read(),y=read(),z=read();
sum+=z,add(s,i,z);
add(i,x+m,inf),add(i,y+m,inf);
}
printf("%d\n",sum-dinic());
return ;
}

bzoj1497: [NOI2006]最大获利(最小割)的更多相关文章

  1. BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4375  Solved: 2142[Submit][Status] ...

  2. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  3. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  4. BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)

    题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...

  5. [bzoj1497][NOI2006]最大获利_网络流_最小割

    最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...

  6. BZOJ1497 [NOI2006]最大获利 网络流 最小割 SAP

    原文链接http://www.cnblogs.com/zhouzhendong/p/8371052.html 题目传送门 - BZOJ1497 题意概括 有n个站要被建立. 建立第i个站的花费为pi. ...

  7. BZOJ 1497 [NOI2006]最大获利

    1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...

  8. Bzoj1497 [NOI2006]最大获利

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4449  Solved: 2181 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...

  9. Vijos1352 NOI2006 最大获利 最小权闭合图

    Orz胡伯涛<最小割模型在信息学竞赛中的应用> 建图方法: 设立源点S和汇点T,S和用户(共M个)连边,载流量为满足其要求的获利 T和中转站(共N个)连边,载流量为建立该中转站的费用 每个 ...

随机推荐

  1. 【gcd】辗转相除法

    #include<stdio.h> int gcd(int a, int b) { int c; while(b) { c = a % b; a = b; b = c; } return ...

  2. review代码,需要做些什么???

    有一种习惯,叫看代码找问题:有另一种习惯,叫不看代码很不习惯. 这,矛盾,处处不在! review代码(code diff升级)到底可以做些什么?该做些什么? 1.整体代码风格是否贴切已有框架的设计风 ...

  3. ros 配置udev

    显示已经链接设备 lsusb 显示挂载点 ls /dev/ttyACM* /dev/ttyUSB* 可以看到 ttyUSB0 和 ttyUSB1 对应哪一个设备不确定,因此,我们就需要一种方法来保证每 ...

  4. NOIP(CSP)答题技巧&小细节

    1.主函数类型 通常使用int main(),然而可以使用完全等价的signed main() 解锁 #define int long long  的操作 2.long long 的使用 数列长度/边 ...

  5. Snoopy.class.php介绍

    Snoopy是一个开源的模拟抓取工具,找到一个不错的介绍网页 记录一下: php开源采集类Snoopy.class.php功能使用介绍与下载地址 Snoopy.class.php使用手册 还有一个介绍 ...

  6. 【hash表】收集雪花

    [哈希和哈希表]收集雪花 题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有n个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集 ...

  7. 核发电站 (dp前缀优化)

    大意: $n$个城市, $m$种核电站, 第$i$种假设要建在第$x$个城市, 必须满足$[x-i,x+i]$范围内无其他核电站, 求建核电站的方案数. 简单$dp$题, 设$dp[i][j]$为位置 ...

  8. makemigrations和migrate到底干了什么以及如何查询原生的sql语句

    在你改动了 model.py的内容之后执行下面的命令: python manger.py makemigrations 相当于 在该app下建立 migrations目录,并记录下你所有的关于mode ...

  9. VS显示方法引用

    菜单栏 工具->选项->文本编辑器->所有语言->CodeLens 勾上即可

  10. ASP.NET Core中间件实现分布式 Session(转载)

    ASP.NET Core中间件实现分布式 Session 1. ASP.NET Core中间件详解 1.1. 中间件原理 1.1.1. 什么是中间件 1.1.2. 中间件执行过程 1.1.3. 中间件 ...