在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xjxi=xj或xi≠xjxi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。

例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入格式

输入文件的第1行包含1个正整数t,表示需要判定的问题个数,注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。

接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xjxi=xj;若e=0,则该约束条件为xi≠xjxi≠xj。

输出格式

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

数据范围

1≤n≤10000001≤n≤1000000
1≤i,j≤10000000001≤i,j≤1000000000

输入样例:

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

输出样例:

NO
YES

算法:离散化 + 并查集

题解:因为数据范围过大,并查集用的数据存储不了,所以我们就需要使用离散化来缩小数据范围。首先我们需要将满足相等的约束条件建立一个关系图(就是使用并查集),然后依次判断不相等的约束条件,如果其中有一个相等,就可以直接跳出,输出NO。

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm> using namespace std; const int maxn = 1e6+; vector<int> g;
int a[maxn][], b[maxn][];
int f[maxn]; int find(int x) {
return lower_bound(g.begin(), g.end(), x) - g.begin() + ;
} int get(int x) {
if(x != f[x]) {
return f[x] = get(f[x]);
}
return f[x];
} int main() {
int T;
scanf("%d", &T);
while(T--) {
g.clear(); //记住一定要清空vector数组
int n;
scanf("%d", &n);
int lena = ;
int lenb = ;
for(int i = ; i <= n; i++) {
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
g.push_back(u);
g.push_back(v);
if(w) {
a[lena][] = u;
a[lena][] = v;
lena++;
} else {
b[lenb][] = u;
b[lenb][] = v;
lenb++;
}
}
for(int i = ; i <= * n; i++) { //初始化
f[i] = i;
}
sort(g.begin(), g.end());
g.erase(unique(g.begin(), g.end()), g.end()); //离散化
for(int i = ; i < lena; i++) {
int fx = get(find(a[i][]));
int fy = get(find(a[i][]));
if(fx != fy) {
f[fx] = fy;
}
}
int mark = ;
for(int i = ; i < lenb; i++) {
int fx = get(find(b[i][]));
int fy = get(find(b[i][]));
if(fx == fy) {
mark = ;
break;
}
}
if(mark) {
printf("YES\n");
} else {
printf("NO\n");
}
}
return ;
}

AcWing:237. 程序自动分析(离散化 + 并查集)的更多相关文章

  1. 【bzoj4195】[Noi2015]程序自动分析 离散化+并查集

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...

  2. P1955 [NOI2015]程序自动分析[离散化+并查集]

    大水题一道,不明白为什么你谷评了个蓝.一看就是离散化,先去满足相等的条件,相等即为两点联通,或者说在同一个集合内.再看不相等,只有两元素在同一集合才不满足.裸的disjoint-set直接上,常数巨大 ...

  3. 【BZOJ4195】【NOI2015】程序自动分析(并查集)

    [BZOJ4195][NOI2015]程序自动分析(并查集) 题面 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设 ...

  4. [NOI2015]程序自动分析(并查集,离散化)

    [NOI2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的 ...

  5. NOI2015 洛谷P1955 程序自动分析(并查集+离散化)

    这可能是我目前做过的最简单的一道noi题目了...... 先对e=1的处理,用并查集:再对e=0查询,如果这两个在同一集合中,则为""NO",最后都满足的话输出" ...

  6. [NOI2015]程序自动分析(并查集)

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...

  7. 【luoguP1955 】[NOI2015]程序自动分析--普通并查集

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...

  8. 洛谷P1955 程序自动分析 [NOI2015] 并查集

    正解:并查集+离散化 解题报告: 传送门! 其实题目还挺水的,,,但我太傻逼了直接想挂了,,,所以感觉还是有个小坑点所以还是写个题解记录下我的傻逼QAQ 首先这题一看,就长得很像NOIp关押罪犯?然后 ...

  9. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  10. AcWing 237. 程序自动分析

    #include<bits/stdc++.h> using namespace std; const int N=1e6+5; int f[N*2],a[N],b[N],c[N],n,t, ...

随机推荐

  1. Python 线程&进程与协程

    Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...

  2. MyBatis MyBatis Generator入门

    一.MGB功能简介 MyBatis Generator是一个代码生成工具. MBG是如何运行的呢?它会检查所连接到的数据库的一个或者多个table,然后生成可用来访问这些table的构建(Java代码 ...

  3. 【Android】二、HelloWorld

    1. 按照该网址写HelloWorld 例子   http://www.runoob.com/android/android-hello-world-example.html 2.点击 make pr ...

  4. span元素

    <span>标签属于行内元素(inline),所以无法设置高度和宽度: 如果需要改变其宽高,就需要将其转变为块体元素(block)或行内块体元素(inle-block)

  5. kalilinux 渗透测试笔记

    声明:本文理论大部分是苑房弘kalilinux渗透测试的内容 第五章:基本工具 克隆网页,把gitbook的书记下载到本地 httrack "http://www.mybatis.org/m ...

  6. 【jekins】jenkins构建触发

    一.定时构建的语法 * * * * *(五颗星,中间用空格隔开)第一颗*表示分钟,取值0~59第二颗*表示小时,取值0~23第三颗*表示一个月的第几天,取值1~31第四颗*表示第几月,取值1~12第五 ...

  7. css 之calc无效踩坑

    踩坑: 1. height:calc(100vh-60);  无效 2.height:calc(100vh-60px); 无效 3.height:calc(100vh - 60px);  终于起效 总 ...

  8. docker images 导入和导出

    目录 docker images 导入和导出 1.前言 2.docker image 的保存 3.docker image 的导入 docker images 导入和导出 1.前言 前提是现在有一个可 ...

  9. sed交换任意两行

    命令: sed -n 'A{h;n;B!{:a;N;C!ba;x;H;n};x;H;x};p' 文件名 解释: A.B分别是需要交换的行,C是B-1 其中,A.B.C可以是行号,也可以通过匹配模式,如 ...

  10. 一周死磕fastreport ----ASP.NET (一)

    https://blog.csdn.net/wuyuander/article/details/52692435 原文链接,点击跳转 首先是安装好FastReport .net: 然后在vs2012中 ...