js 中的 number 为何很怪异

声明:需要读者对二进制有一定的了解

对于 JavaScript 开发者来说,或多或少都遇到过 js 在处理数字上的奇怪现象,比如:


> 0.1 + 0.2
0.30000000000000004 > 0.1 + 1 - 1
0.10000000000000009 > 0.1 * 0.2
0.020000000000000004 > Math.pow(2, 53)
9007199254740992 > Math.pow(2, 53) + 1
9007199254740992 > Math.pow(2, 53) + 3
9007199254740996

如果想要弄明白为什么会出现这些奇怪现象,首先要弄清楚 JavaScript 是怎样编码数字的

1. JavaScript 是怎样编码数字的

JavaScript 中的数字,不管是整数、小数、分数,还是正数、负数,全部是浮点数,都是用 8 个字节(64 位)来存储的。

一个数字(如 120.12-999)在内存中占用 8 个字节(64 位),存储方式如下:

  1. 0 - 51:分数部分(52 位)
  2. 52 - 62:指数部分(11 位)
  3. 63:符号位(1 位:0 表示这个数是正数,1 表示这个数是负数)

符号位很好理解,用于指明是正数还是负数,且只有 1 位、两种情况(0 表示正数,1 表示负数)。

其他两部分是分数部分和指数部分,用于计算一个数的绝对值。

1.1 绝对值计算公式


1: abs = 1.f * 2 ^ (e - 1023) 0 < e < 2047
2: abs = 0.f * 2 ^ (e - 1022) e = 0, f > 0
3: abs = 0 e = 0, f = 0
4: abs = NaN e = 2047, f > 0
5: abs = ∞ (infinity, 无穷大) e = 2047, f = 0

说明:

  • 这个公式是二进制的算法公式,结果用 abs 表示,分数部分用 f 表示,指数部分用 e 表示
  • 2 ^ (e - 1023) 表示 2e - 1023 次方
  • 因为分数部分占 52 位,所以 f 的取值范围为 00...00(中间省略 48 个 0) 到 11...11(中间省略 48 个 1)
  • 因为指数部分占 11 位,所以 e 的取值范围为 000000000000) 到 204711111111111

从上面的公式可以看出:

  • 1 的存储方式:1.00 * 2 ^ (1023 - 1023)f = 0000..., e = 1023... 表示 48 个 0)
  • 2 的存储方式:1.00 * 2 ^ (1024 - 1023)f = 0000..., e = 1024... 表示 48 个 0)
  • 9 的存储方式:1.01 * 2 ^ (1025 - 1023)f = 0100..., e = 1025... 表示 48 个 0)
  • 0.5 的存储方式:1.00 * 2 ^ (1022 - 1023)f = 0000..., e = 1022... 表示 48 个 0)
  • 0.625 的存储方式:1.01 * 2 ^ (1021 - 1023)f = 0100..., e = 1021... 表示 48 个 0)

1.2 绝对值的取值范围与边界

从上面的公式可以看出:

1.2.1 0 < e < 2047

0 < e < 2047 时,取值范围为:f = 0, e = 1f = 11...11, e = 2046(中间省略 48 个 1)

即:Math.pow(2, -1022)~= Math.pow(2, 1024) - 1~= 表示约等于)

这当中,~= Math.pow(2, 1024) - 1 就是 Number.MAX_VALUE 的值,js 所能表示的最大数值。

1.2.2 e = 0, f > 0

e = 0, f > 0 时,取值范围为:f = 00...01, e = 0(中间省略 48 个 0) 到 f = 11...11, e = 0(中间省略 48 个 1)

即:Math.pow(2, -1074)~= Math.pow(2, -1022)~= 表示约等于)

这当中,Math.pow(2, -1074) 就是 Number.MIN_VALUE 的值,js 所能表示的最小数值(绝对值)。

1.2.3 e = 0, f = 0

这只表示一个值 0,但加上符号位,所以有 +0-0

但在运算中:


&gt; +0 === -0
true

1.2.4 e = 2047, f > 0

这只表示一种值 NaN

但在运算中:


&gt; NaN == NaN
false &gt; NaN === NaN
false

1.2.5 e = 2047, f = 0

这只表示一个值 (infinity, 无穷大)。

在运算中:


&gt; Infinity === Infinity
true &gt; -Infinity === -Infinity
true

1.3 绝对值的最大安全值

从上面可以看出,8 个字节能存储的最大数值是 Number.MAX_VALUE 的值,也就是 ~= Math.pow(2, 1024) - 1

但这个数值并不安全:从 1Number.MAX_VALUE 中间的数字并不连续,而是离散的。

比如:Number.MAX_VALUE - 1, Number.MAX_VALUE - 2 等数值都无法用公式得出,就存储不了。

所以这里引出了最大安全值 Number.MAX_SAFE_INTEGER,也就是从 1Number.MAX_SAFE_INTEGER 中间的数字都是连续的,处在这个范围内的数值计算都是安全的。

f = 11...11, e = 1075(中间省略 48 个 1)时,取得这个值 111...11(中间省略 48 个 1),即 Math.pow(2, 53) - 1

大于 Number.MAX_SAFE_INTEGER:Math.pow(2, 53) - 1 的数值都是离散的。

比如:Math.pow(2, 53) + 1, Math.pow(2, 53) + 3 不能用公式得出,无法存储在内存中。

所以才会有文章开头的现象:


&gt; Math.pow(2, 53)
9007199254740992 &gt; Math.pow(2, 53) + 1
9007199254740992 &gt; Math.pow(2, 53) + 3
9007199254740996

因为 Math.pow(2, 53) + 1 不能用公式得出,就无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数,Math.pow(2, 53),然后存储在内存中,这就是失真,即不安全。

1.4 小数的存储方式与计算

小数中,除了满足 m / (2 ^ n)m, n 都是整数)的小数可以用完整的 2 进制表示之外,其他的都不能用完整的 2 进制表示,只能无限的逼近一个 2 进制小数。

(注:[2] 表示二进制,^ 表示 N 次方)


0.5 = 1 / 2 = [2]0.1
0.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111

# 0.3 的逼近 0.25 ([2]0.01) &lt; 0.3 &lt; 0.5 ([2]0.10) 0.296875 ([2]0.0100110) &lt; 0.3 &lt; 0.3046875 ([2]0.0100111) 0.2998046875 ([2]0.01001100110) &lt; 0.3 &lt; 0.30029296875 ([2]0.01001100111) ... 根据公式计算,直到把分数部分的 52 位填满,然后取最靠近的数 0.3 的存储方式:[2]0.010011001100110011001100110011001100110011001100110011 (f = 0011001100110011001100110011001100110011001100110011, e = 1021)

从上面可以看出,小数中大部分都只是近似值,只有少部分是真实值,所以只有这少部分的值(满足 m / (2 ^ n) 的小数)可以直接比较大小,其他的都不能直接比较。


&gt; 0.5 + 0.125 === 0.625
true &gt; 0.1 + 0.2 === 0.3
false

为了安全的比较两个小数,引入 Number.EPSILON [Math.pow(2, -52)] 来比较浮点数。


&gt; Math.abs(0.1 + 0.2 - 0.3) &lt; Number.EPSILON
true

1.5 小数最大保留位数

js 从内存中读取一个数时,最大保留 17 位有效数字。


&gt; 0.010011001100110011001100110011001100110011001100110011
0.30000000000000000
0.3

&gt; 0.010011001100110011001100110011001100110011001100110010
0.29999999999999993

&gt; 0.010011001100110011001100110011001100110011001100110100
0.30000000000000004

&gt; 0.0000010100011110101110000101000111101011100001010001111100
0.020000000000000004

2. Number 对象中的常量

2.1 Number.EPSILON

表示 1 与 Number 可表示的大于 1 的最小的浮点数之间的差值。


Math.pow(2, -52)

用于浮点数之间安全的比较大小。

2.2 Number.MAX_SAFE_INTEGER

绝对值的最大安全值。


Math.pow(2, 53) - 1

2.3 Number.MAX_VALUE

js 所能表示的最大数值(8 个字节能存储的最大数值)。


~= Math.pow(2, 1024) - 1

2.4 Number.MIN_SAFE_INTEGER

最小安全值(包括符号)。


-(Math.pow(2, 53) - 1)

2.5 Number.MIN_VALUE

js 所能表示的最小数值(绝对值)。


Math.pow(2, -1074)

2.6 Number.NEGATIVE_INFINITY

负无穷大。


-Infinity

2.7 Number.POSITIVE_INFINITY

正无穷大。


+Infinity

2.8 Number.NaN

非数字。

3. 寻找奇怪现象的原因

3.1 为什么 0.1 + 0.2 结果是 0.30000000000000004

0.3 的逼近算法类似。


0.1 的存储方式:[2]0.00011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1019) 0.2 的存储方式:[2]0.0011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1020)

0.1 + 0.2: 0.0100110011001100110011001100110011001100110011001100111 (f = 00110011001100110011001100110011001100110011001100111, e = 1021)

f = 00110011001100110011001100110011001100110011001100111 有 53 位,超过了正常的 52 位,无法存储,所以取最近的数:


0.1 + 0.2: 0.010011001100110011001100110011001100110011001100110100 (f = 0011001100110011001100110011001100110011001100110100, e = 1021)

js 读取这个数字为 0.30000000000000004

3.2 为什么 Math.pow(2, 53) + 1 结果是 Math.pow(2, 53)

因为 Math.pow(2, 53) + 1 不能用公式得出,无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数。

比这个数小的、最靠近的数:


Math.pow(2, 53) (f = 0000000000000000000000000000000000000000000000000000, e = 1076)

比这个数大的、最靠近的数:


Math.pow(2, 53) + 2 (f = 0000000000000000000000000000000000000000000000000001, e = 1076)

取第一个数:Math.pow(2, 53)

所以:


&gt; Math.pow(2, 53) + 1 === Math.pow(2, 53)
true

参考文章

后续

更多博客,查看 https://github.com/senntyou/blogs

作者:深予之 (@senntyou)

版权声明:自由转载-非商用-非衍生-保持署名(创意共享3.0许可证

js 中的 number 为何很怪异的更多相关文章

  1. js中声明Number的五种方式

    转载自:http://www.jb51.net/article/34191.htm <!DOCTYPE html> <html> <head> <meta c ...

  2. JS中的Number数据类型详解

    Number数据类型 Number类型使用IEEE754格式来表示整数和浮点值,这也是0.2 + 0.3不等于0.5的原因, 最基本的数值类型字面量格式是十进制整数 var a = 10; 1. 浮点 ...

  3. js中的Number方法

    1.Number.toExponential(fractionDigits) 把number转换成一个指数形式的字符串.可选参数控制其小数点后的数字位数.它必须在0~20之间. 例如: documen ...

  4. 【转】JS中处理Number浮点数精度问题

    https://github.com/dt-fe/number-precision ~(function(root, factory) { if (typeof define === "fu ...

  5. js中的this怎么理解

    本博客供自己学习备忘, js中的this感觉很混乱,目前还有不少地方搞得不是很清楚,看到一篇不错的文章,先摘下来 this是Javascript语言的一个关键字它代表函数运行时,自动生成的一个内部对象 ...

  6. Js中执行变量中的命令语句,也就是所谓的宏替换(很实用的例子)

    Js中执行变量中的命令语句,也就是所谓的宏替换(很实用的例子) 由其做动态编程时非常有用,必须符合js中的语法,用eval能够执行. var aaa="alert('这是变量中的语句')&q ...

  7. node.js 中回调函数callback(转载),说的很清楚,看一遍就理解了

    最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs.express 的代码就会看得一塌糊涂.比如: 复制代码 代码如下: app.use(fu ...

  8. 小tips:JS数值之间的转换,JS中最大的Number是多少?,JS == 与 === 的区别

    JS数值之间的转换 Number(), parseInt(),parseFloat() Number()函数的转换规则如下: 1.如果boolean值,true和false将分别被转换为1和02.如果 ...

  9. 实现一个函数clone,可以对JS中的5种数据类型(Number、String、Object、Array、Boolean)进行值复制

     实现一个函数clone,可以对JS中的5种数据类型(Number.String.Object.Array.Boolean)进行值复制

随机推荐

  1. UVA 1393 Highways,UVA 12075 Counting Triangles —— (组合数,dp)

    先看第一题,有n*m个点,求在这些点中,有多少条直线,经过了至少两点,且不是水平的也不是竖直的. 分析:由于对称性,我们只要求一个方向的线即可.该题分成两个过程,第一个过程是求出n*m的矩形中,dp[ ...

  2. [CSP-S2019]:赛后总结

    笔者有幸参加了$CSP-S\ 2019$,$AFO$之前,写下自己最后一篇赛后总结. $Day\ 0$ 早上起来把自己调了一晚上被卡空间的题卡过了,很开心(内存限制$256MB$,然而我的内存申请是$ ...

  3. Python,初次见面请多指教

    特点 1.可读性强: 可读性远比听上去重要的多得多.一个程序会被反复的修改,可读性强意味着让你可以在更短的时间内学习和记忆,直接提高生产率. 2.简洁,简洁,简洁: 研究证明,程序员每天可编写的有效代 ...

  4. 2018-2019-2 20165330《网络对抗技术》Exp8 Web基础

    目录 基础问题 相关知识 实验内容 实验步骤 实验总结与体会 实验内容 Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML ...

  5. mysql主从复制原理及步骤

    原理: 1master开启bin-log功能,日志文件用于记录数据库的读写增删2需要开启3个线程,master IO线程,slave开启 IO线程 SQL线程,3Slave 通过IO线程连接maste ...

  6. linux 下执行py问题提示cannot import name request

    最近因为工作需要,需要在linux上去执行python代码,但是在执行的时候提示cannot import name request,我以为是导入有问题,然后我就把代码放到与包一个目录下,执行py问题 ...

  7. 使用LuceneUtil工具类,完成CURD操作

    package loaderman.curd; import java.util.ArrayList; import java.util.List; import loaderman.entity.A ...

  8. NFS PersistentVolume(8)

    一.部署nfs服务端: k8s-master 节点上搭建了 NFS 服务器 (1)安装nfs服务: yum install -y nfs-utils rpcbind vim /etc/exports ...

  9. HDFS文件目录操作代码

    分布式文件系统HDFS中对文件/目录的相关操作代码,整理了一下,大概包括以下部分: 文件夹的新建.删除.重命名 文件夹中子文件和目录的统计 文件的新建及显示文件内容 文件在local和remote间的 ...

  10. wdScrollTab

    wdScrollTab是一个采用jQuery实现的Tab面板,当标签太多超出页面时会自动滚动.支持iframe.ajax调用和动态加载内容.