分布式锁与实现--基于ZooKeeper实现
引言
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的架构通过冗余服务实现高可用性。因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机。ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构。
客户端可以在节点读写,从而以这种方式拥有一个共享的配置服务。更新是全序的。
基于ZooKeeper分布式锁的流程
- 在zookeeper指定节点(locks)下创建临时顺序节点node_n
- 获取locks下所有子节点children
- 对子节点按节点自增序号从小到大排序
- 判断本节点是不是第一个子节点,若是,则获取锁;若不是,则监听比该节点小的那个节点的删除事件
- 若监听事件生效,则回到第二步重新进行判断,直到获取到锁
具体实现
下面就具体使用java和zookeeper实现分布式锁,操作zookeeper使用的是apache提供的zookeeper的包。
- 通过实现Watch接口,实现process(WatchedEvent event)方法来实施监控,使CountDownLatch来完成监控,在等待锁的时候使用CountDownLatch来计数,等到后进行countDown,停止等待,继续运行。
- 以下整体流程基本与上述描述流程一致,只是在监听的时候使用的是CountDownLatch来监听前一个节点。
分布式锁:
import org.apache.zookeeper.*; import org.apache.zookeeper.data.Stat; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; /** * Created by liuyang on 2017/4/20. */ public class DistributedLock implements Lock, Watcher { private ZooKeeper zk = null; // 根节点 private String ROOT_LOCK = "/locks"; // 竞争的资源 private String lockName; // 等待的前一个锁 private String WAIT_LOCK; // 当前锁 private String CURRENT_LOCK; // 计数器 private CountDownLatch countDownLatch; private int sessionTimeout = 30000; private List<Exception> exceptionList = new ArrayList<Exception>(); /** * 配置分布式锁 * @param config 连接的url * @param lockName 竞争资源 */ public DistributedLock(String config, String lockName) { this.lockName = lockName; try { // 连接zookeeper zk = new ZooKeeper(config, sessionTimeout, this); Stat stat = zk.exists(ROOT_LOCK, false); if (stat == null) { // 如果根节点不存在,则创建根节点 zk.create(ROOT_LOCK, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); } } catch (IOException e) { e.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } } // 节点监视器 public void process(WatchedEvent event) { if (this.countDownLatch != null) { this.countDownLatch.countDown(); } } public void lock() { if (exceptionList.size() > 0) { throw new LockException(exceptionList.get(0)); } try { if (this.tryLock()) { System.out.println(Thread.currentThread().getName() + " " + lockName + "获得了锁"); return; } else { // 等待锁 waitForLock(WAIT_LOCK, sessionTimeout); } } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } } public boolean tryLock() { try { String splitStr = "_lock_"; if (lockName.contains(splitStr)) { throw new LockException("锁名有误"); } // 创建临时有序节点 CURRENT_LOCK = zk.create(ROOT_LOCK + "/" + lockName + splitStr, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); System.out.println(CURRENT_LOCK + " 已经创建"); // 取所有子节点 List<String> subNodes = zk.getChildren(ROOT_LOCK, false); // 取出所有lockName的锁 List<String> lockObjects = new ArrayList<String>(); for (String node : subNodes) { String _node = node.split(splitStr)[0]; if (_node.equals(lockName)) { lockObjects.add(node); } } Collections.sort(lockObjects); System.out.println(Thread.currentThread().getName() + " 的锁是 " + CURRENT_LOCK); // 若当前节点为最小节点,则获取锁成功 if (CURRENT_LOCK.equals(ROOT_LOCK + "/" + lockObjects.get(0))) { return true; } // 若不是最小节点,则找到自己的前一个节点 String prevNode = CURRENT_LOCK.substring(CURRENT_LOCK.lastIndexOf("/") + 1); WAIT_LOCK = lockObjects.get(Collections.binarySearch(lockObjects, prevNode) - 1); } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } return false; } public boolean tryLock(long timeout, TimeUnit unit) { try { if (this.tryLock()) { return true; } return waitForLock(WAIT_LOCK, timeout); } catch (Exception e) { e.printStackTrace(); } return false; } // 等待锁 private boolean waitForLock(String prev, long waitTime) throws KeeperException, InterruptedException { Stat stat = zk.exists(ROOT_LOCK + "/" + prev, true); if (stat != null) { System.out.println(Thread.currentThread().getName() + "等待锁 " + ROOT_LOCK + "/" + prev); this.countDownLatch = new CountDownLatch(1); // 计数等待,若等到前一个节点消失,则precess中进行countDown,停止等待,获取锁 this.countDownLatch.await(waitTime, TimeUnit.MILLISECONDS); this.countDownLatch = null; System.out.println(Thread.currentThread().getName() + " 等到了锁"); } return true; } public void unlock() { try { System.out.println("释放锁 " + CURRENT_LOCK); zk.delete(CURRENT_LOCK, -1); CURRENT_LOCK = null; zk.close(); } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } } public Condition newCondition() { return null; } public void lockInterruptibly() throws InterruptedException { this.lock(); } public class LockException extends RuntimeException { private static final long serialVersionUID = 1L; public LockException(String e){ super(e); } public LockException(Exception e){ super(e); } } }
测试代码:
public class Test { static int n = 500; public static void secskill() { System.out.println(--n); } public static void main(String[] args) { Runnable runnable = new Runnable() { public void run() { DistributedLock lock = null; try { lock = new DistributedLock("127.0.0.1:2181", "test1"); lock.lock(); secskill(); System.out.println(Thread.currentThread().getName() + "正在运行"); } finally { if (lock != null) { lock.unlock(); } } } }; for (int i = 0; i < 10; i++) { Thread t = new Thread(runnable); t.start(); } } }
运行结果:
总体来说,如果了解到整个实现流程,使用zookeeper实现分布式锁并不是很困难,不过这也只是一个简单的实现,
与前面实现Redis实现相比,本实现的稳定性更强,这是因为zookeeper的特性所致,在外界看来,zookeeper集群中每一个节点都是一致的。
分布式锁与实现--基于ZooKeeper实现的更多相关文章
- 分布式锁(3) ----- 基于zookeeper的分布式锁
分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...
- 分布式锁(2) ----- 基于redis的分布式锁
分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...
- 分布式锁用Redis还是ZooKeeper?(转载)
文章系网络转载,侵删. 来源:https://zhuanlan.zhihu.com/p/73807097 为什么用分布式锁?在讨论这个问题之前,我们先来看一个业务场景. 图片来自 Pexels 为什么 ...
- 分布式锁用Redis与Zookeeper的使用
为什么用分布式锁? 在讨论这个问题之前,我们先来看一个业务场景: 系统A是一个电商系统,目前是一台机器部署,系统中有一个用户下订单的接口,但是用户下订单之前一定要去检查一下库存,确保库存足够了才会 ...
- 分布式锁(一) Zookeeper分布式锁
什么是Zookeeper? Zookeeper(业界简称zk)是一种提供配置管理.分布式协同以及命名的中心化服务,这些提供的功能都是分布式系统中非常底层且必不可少的基本功能,但是如果自己实现这些功能而 ...
- 服务注册发现consul之四: 分布式锁之四:基于Consul的KV存储和分布式信号量实现分布式锁
一.基于key/value实现 我们在构建分布式系统的时候,经常需要控制对共享资源的互斥访问.这个时候我们就涉及到分布式锁(也称为全局锁)的实现,基于目前的各种工具,我们已经有了大量的实现方式,比如: ...
- 分布式锁中的基于redis的setnx的原理以及set和setnx的区别是什么
基于Redis实现分布式锁.虽然网上介绍的Redis分布式锁博客比较多,却有着各种各样的问题,本篇博客将详细介绍如何正确地使用setnx实现Redis分布式锁 这里就不介绍错误的示范了 大家直接看正确 ...
- 分布式锁为什么要选择Zookeeper而不是Redis?
在分布式的应用中,为了防止单点故障,保障高可用,通常会采用主从结构,当主节点挂掉后,从节点可以代替主节点提供服务. Redis通过复制 + sentinel哨兵来实现主从模式. Zookeeper通过 ...
- 分布式锁之二:zookeeper分布式锁2
示例: package com.util; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.zoo ...
随机推荐
- 原生JS-实现轮播图
用原生JS实现一个轮播图(效果) HTML <div id="outer"> <ul id="imgList"> <!-- 图片列 ...
- SQL:MYSQL入门
MYSQL(关系型数据库管理系统) 参考手册:http://www.w3school.com.cn/sql/index.asp 给大家讲一下数据库:常见的有 ACCESS.MSSSQL.MYSQL.O ...
- JAVA语言程序设计课后习题----第四单元解析(仅供参考)
1 本题水题,主要理解题目的意思即可,访问方法和修改方法可以通过快捷方式alt+insert选中你需要的成员变量即可 public class Person { public String name; ...
- Delphi 画笔
樊伟胜
- 适配器 1、ArrayAdapter 2.SimpleAdapter
1.ArrayAdapter(数组适配器):用于绑定格式单一的数据.数据源:可以是集合或数组 public class MainActivity extends AppCompatActivity { ...
- Jmeter (三) 集合点 、检查点 (断言)
不同的 测试工具有不同的命名 断言 :即检查点,在请求中 加入测试人员的判断,返回 结果 TRUE or FALSE ,得到 测试人员的判断是否正确 集合点 1.打开 synchronizing ...
- Alpha版本第一周小结
姓名 学号 周前计划安排 每周实际工作记录 自我打分(百分制) HTB 061126 1.博客撰写,分配任务 2.编码实现各个模块的功能 1.撰写博客 2.已初步实现各个模块的功能,对某些数据处理还存 ...
- 开源框架相关面试问题-butterknife注解框架面试问题讲解
butterknife使用简介: 它的出现主要是为了解决咱们在android开发中会写大量的findViewById().setOnClickListener()这样的索然无味的代码,其实它就是一个依 ...
- 【ARC072 E】Alice in linear land
被智商题劝退,告辞 题意 有一个人在一条数轴的距离原点为 \(D\) 的位置,他可以执行 \(n\) 次操作,每次操作为给定一个整数 \(d_i\),这个人向原点的方向走 \(d_i\) 个单位,但如 ...
- Java应用的理解
一.程序 对每个程序来说,不管用什么语言开发出来的,他的功用分为三种: 1.接收输入流 2.处理数据 3.传出输出流 接收输入流,包括从网络.文件.用户输入等:传出输出流,包括网络.文件.显示设备等: ...