09.变态跳台阶 Java
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路
0:0
1:(1)
2:(1,1)(2)
3:(1,1,1)(2,1)(1,2)(3)
4:(1,1,1,1)(2,1,1)(1,2,1)(3,1)(1,1,2)(1,3)(2,2)(4)
显然,除了0,其他都是2^(n-1);
OJ并未检查小于等于0的情况,所以也可将该界外判断去掉。
n级台阶,第一步有n种跳法:1,2,3,...,n
跳1级,剩下的有F(n-1)种。
跳2级,剩下的有F(n-2)种。
...
跳n级,剩下的有F(0)=1种。
所以F(n)=F(n-1)+F(n-2)+...+F(0)
因为F(n-1)=F(n-2)+F(n-3)+...+F(0)
所以F(n)=2*F(n-1)
代码
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
int temp=1;
while(target >=2){
temp *=2;
target--;
}
return temp;
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
return (int)Math.pow(2,target-1);
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
return 1 << (target -1);
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}else if(target == 1){
return 1;
}
return 2*JumpFloorII(target-1);
}
}
09.变态跳台阶 Java的更多相关文章
- 剑指offer 09变态跳台阶
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...
- 剑指offer例题——跳台阶、变态跳台阶
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- 《剑指offer》— JavaScript(9)变态跳台阶
变态跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { ...
- 剑指Offer - 九度1389 - 变态跳台阶
剑指Offer - 九度1389 - 变态跳台阶2013-11-24 04:20 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳 ...
- [剑指Offer]2.变态跳台阶
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...
- 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...
- (原)剑指offer变态跳台阶
变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析一下明天是个斐波那契 ...
- [剑指offer] 8+9. 跳台阶+变态跳台阶 (递归 时间复杂度)
跳台阶是斐波那契数列的一个典型应用,其思路如下: # -*- coding:utf-8 -*- class Solution: def __init__(self): self.value=[0]*5 ...
随机推荐
- Advanced Installer 不弹出预安装的软件的窗口
需求:当他电脑上没有sql server client 的时候,或没有localdb的时候,那么安装包会弹出窗口,让他选择 一个组件 一个组件的安装 太麻烦. 有没有办法,打开安装包就安装 安装的过程 ...
- 客户端注册Cannot execute request on any known server解决
在对eureka注册中心服务端添加安全验证后,新版本springcloud出现一个问题就是,在客户端注册到服务中心时报了一个错:Cannot execute request on any known ...
- 【转】CnBlogs自定义博客样式
文章有一个好的排版,将能够增加阅读者对其内容的兴趣. 本文总结了如何美化博客园中文章的部分显示样式. 1.美化文章标题的显示样式 2.增添LaTex数学公式的显示 3.目录索引的显示 4.添加文章末尾 ...
- vue-element-admin 多层路由问题
在二级页面上添加<router-view> 关于页面打包后三级路由无法访问问题 需要将 存放router-view 的页面单独存放一个文件夹 router.js 写法
- KVM命令记录
创建qcow2镜像qemu-img create -f qcow2 /vm/kvm/img/vm41.img 500G 创建虚拟机virt-install --name=vm41 --disk pat ...
- PHP删除字符串中的空格和换行符 将字符串中的连续多个空格转换为一个空格
//删除空格和回车 function trimall($str){ $qian=array(" "," ","\t","\n&qu ...
- textwrap:格式化文本段落
介绍 需要美观打印(pretty-printing)的情况下,可以使用textwrap模块格式化要输出的文本. 它提供了很多文本编辑器和字符处理器中都有的段落自动换行或填充特性 填充段落 import ...
- Scala(一)——基本类型
Scala语言快速入门(基本类型) (参考视频:av39126512,韩顺平281集scala精讲) 一.Linux和Windows环境安装 这部分跳过,直接使用IDEA进行搭建,和其他编程语言配置差 ...
- Python爬虫进阶之Scrapy框架安装配置
Python爬虫进阶之Scrapy框架安装配置 初级的爬虫我们利用urllib和urllib2库以及正则表达式就可以完成了,不过还有更加强大的工具,爬虫框架Scrapy,这安装过程也是煞费苦心哪,在此 ...
- TCP/IP——内网IP
版权声明:本文系博主原创文章,转载或引用请注明出处. 1)背景 REC 1918留出了3块IP地址空间(1个A类地址段,16个B类地址段,256个C类地址段)作为私有的内部使用的地址. 在这个范围内的 ...