题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

思路

0:0
1:(1)
2:(1,1)(2)
3:(1,1,1)(2,1)(1,2)(3)
4:(1,1,1,1)(2,1,1)(1,2,1)(3,1)(1,1,2)(1,3)(2,2)(4) 显然,除了0,其他都是2^(n-1);
OJ并未检查小于等于0的情况,所以也可将该界外判断去掉。
n级台阶,第一步有n种跳法:1,2,3,...,n
跳1级,剩下的有F(n-1)种。
跳2级,剩下的有F(n-2)种。
...
跳n级,剩下的有F(0)=1种。
所以F(n)=F(n-1)+F(n-2)+...+F(0)
因为F(n-1)=F(n-2)+F(n-3)+...+F(0)
所以F(n)=2*F(n-1)

代码

public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
int temp=1;
while(target >=2){
temp *=2;
target--;
}
return temp;
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
return (int)Math.pow(2,target-1);
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}
return 1 << (target -1);
}
}
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0){
return 0;
}else if(target == 1){
return 1;
}
return 2*JumpFloorII(target-1);
}
}

09.变态跳台阶 Java的更多相关文章

  1. 剑指offer 09变态跳台阶

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...

  2. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  3. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

  4. 《剑指offer》— JavaScript(9)变态跳台阶

    变态跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { ...

  5. 剑指Offer - 九度1389 - 变态跳台阶

    剑指Offer - 九度1389 - 变态跳台阶2013-11-24 04:20 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳 ...

  6. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  7. 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列

    题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...

  8. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  9. [剑指offer] 8+9. 跳台阶+变态跳台阶 (递归 时间复杂度)

    跳台阶是斐波那契数列的一个典型应用,其思路如下: # -*- coding:utf-8 -*- class Solution: def __init__(self): self.value=[0]*5 ...

随机推荐

  1. <%%> <%! %> <%=%> <%-- --%> jsp中jstl一些运用

    <%%> 这里面可以添加java代码片段<%! %> 这里添加java方法 主要是用来声明变量的 <%=%> 将变量或表达式值输出到页面<%-- --%> ...

  2. GitLab端口冲突 解决办法

        访问gitlab,出现:502 GitLab在使用的过程中,会开启80端口,如果80端口被其他的应用程序占用,则GitLab的该项服务不能使用,所以访问GitLab会失败.大多数皆是此问题.  ...

  3. centos7搭建docker并部署lnmp (转)

      1.首先呢先更新yum源 yum -y update 2.1.安装docker存储库 yum install -y yum-utils \ device-mapper-persistent-dat ...

  4. EEPROM原理详解

    EEPROM(Electrically Erasable Programmable read only memory)即电可擦可编程只读存储器,是一种掉电后数据不丢失(不挥发)存储芯片. EERPOM ...

  5. RHEL7网络管理NetworkManager和nmcli指令

    1.NetworkManager简介 在 Red Hat Enterprise Linux 7 中,NetworkManager 提供的默认联网服务是一个动态网络控制和配置守护 进程,它尝试在其可用时 ...

  6. shell i/o交互及重定向

    标准输入:/dev/stdin,文件描述号:0,默认设备:键盘 标准输出:/dev/stdout,文件描述号:1,默认设备:显示器 标准错误输出:/dev/stderr,文件描述号:2,默认设备:显示 ...

  7. Jmeter (一) 安装

    https://blog.csdn.net/ls1792304830/article/details/52718177 一.准备工具 1.Windows 操作系统 2.jmeter 3.JDk 依赖环 ...

  8. [ZOJ 4025] King of Karaoke

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5766 求两个序列的相对元素的差出现次数最多的,最低出现一次. AC代 ...

  9. QTP(4)

    一.常见回放错误 1.The "XXX" XXX object was not found in the Object Repository.(在对象库中未找到对象) ...... ...

  10. Mike and Feet CodeForces - 548D (单调栈)

    Mike is the president of country What-The-Fatherland. There are n bears living in this country besid ...