leetcode题目4.寻找两个有序数组的中位数(困难)
题目描述:
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
解法一:虽然不符合时间复杂度要求,但是为了说明一下思路,还是cover一下,本地调试和提交都通过了,貌似leetcode缺少复杂度分析机制。
思路:两个排好序的数组,将两个数组合并成一个有序数组,若大数组的长度为奇数,则中位数为大数组中间的那个数,否则中位数为索引值分别是(0+arr.length)和(0+arr.length+1)之和的平均值
class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length;
int n = nums2.length;
return getMedian(nums1,m,nums2,n); } private double getMedian(int[] nums1, int m, int[] nums2, int n) { int i = 0;
int j = 0;
int k = 0;
int[] resultArr = new int[m + n];
while (i < m && j < n) {
if (nums1[i] <= nums2[j]) {
resultArr[k++] = nums1[i++];
} else {
resultArr[k++] = nums2[j++];
}
}
while (i < m) {
resultArr[k++] = nums1[i++];
}
while (j < n) {
resultArr[k++] = nums2[j++];
}
int rn = k-1;
if (rn % 2 == 0) {
return resultArr[rn / 2] * 1.0 ;
} else {
return (resultArr[rn / 2] + resultArr[rn / 2 + 1]) * 1.0 / 2;
}
}
}
复杂度分析:
~时间复杂度:O(m+n)
~空间复杂度:O(m+n)
解法二:递归
思路:
两个有序数组求中位数,问题一般化为,求两个有序数组的第k个数,当k = (m+n)/2时为原问题的解。怎么求第k个数?分别求出第一个和第二个数组的第 k / 2个数 a 和 b,然后比较 a 和 b,当a < b ,说明第 k 个数位于 a数组的第 k / 2个数后半段,或者b数组的 第 k / 2 个数前半段,问题规模缩小了一半,然后递归处理就行。
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length;
int n = nums2.length; //当nums1数组为空的时候
if (m == 0) {
//两个数组的中位数完全取决于数组nums2了
if (n % 2 == 1) {
return nums2[n / 2] * 1.0;
}
return (nums2[n / 2] + nums2[n / 2 -1]) / 2.0;
} //当nums2数组为空的时候
if (n == 0) {
if (m % 2 == 1) {
return nums1[m / 2] * 1.0;
}
return (nums1[m / 2] + nums1[m / 2 - 1]) / 2.0;
} //大数组的总长度m+n
int total = m + n;
//数组长度为奇数,则在数组中寻找第total/2+1个数
if (total % 2 == 1) {
return find_kth(nums1, 0, nums2, 0, total / 2 + 1);
}
return (find_kth(nums1, 0, nums2, 0, total / 2) + find_kth(nums1, 0, nums2, 0, total / 2 + 1)) / 2.0;
} private static double find_kth(int[] nums1, int a_begin, int[] nums2, int b_begin, int k) { //当a_begin或b_begin超过数组长度,则第k个数为另外一个数组第k个数
if (a_begin >= nums1.length) {
return nums2[b_begin + k - 1];
}
//同理
if (b_begin >= nums2.length) {
return nums1[a_begin + k - 1];
}
//递归结束条件,每个数组中都找其第一个元素,使用递归,必须声明递归结束条件
if (k == 1) {
return Math.min(nums1[a_begin], nums2[b_begin]);
} //定义mid_a和mid_b分别代表两个数组中的第k/2个数 int mid_a = Integer.MAX_VALUE;
int mid_b = Integer.MAX_VALUE; if (a_begin + k / 2 - 1 < nums1.length) {
mid_a = nums1[a_begin + k / 2 - 1];
} if (b_begin + k / 2 - 1 < nums2.length) {
mid_b = nums2[b_begin + k / 2 - 1];
}
//如果nums1数组的第 k / 2 个数小于nums2数组的第 k / 2 个数,表示总的第 k 个数位于 nums1的第k / 2个数的后半
// 段,或者是nums2的第 k / 2个数的前半段,由于范围缩小了 k / 2 个数,此时总的第 k 个数实际上等于新的范围内\
// 的第k - k / 2个数,依次递归
if (mid_a < mid_b) {
return find_kth(nums1, a_begin + k / 2, nums2, b_begin, k - k / 2);
}
return find_kth(nums1, a_begin, nums2, b_begin + k / 2, k - k / 2);
} }
复杂度分析:
~时间复杂度: O(log(m+n))
leetcode题目4.寻找两个有序数组的中位数(困难)的更多相关文章
- LeetCode Golang 4. 寻找两个有序数组的中位数
4. 寻找两个有序数组的中位数 很明显我偷了懒, 没有给出正确的算法,因为官方的解法需要时间仔细看一下... func findMedianSortedArrays(nums1 []int, nums ...
- 【LeetCode】4. 寻找两个有序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 ...
- 【LeetCode 4】寻找两个有序数组的中位数
题目链接 [题解] 假设在两个有序的序列中找第k小的数字. 那么我们先定位第一个序列中的第k/2个数字(不足则取最边上的那个数字)记下标为i1 然后定位第二个序列中的第k/2个数字(同样不足则取最边上 ...
- Leetcode(4)寻找两个有序数组的中位数
Leetcode(4)寻找两个有序数组的中位数 [题目表述]: 给定两个大小为 m 和 n 的有序数组 nums1 和* nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O( ...
- Java实现 LeetCode 4 寻找两个有序数组的中位数
寻找两个有序数组的中位数 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 n ...
- 0004. 寻找两个有序数组的中位数(Java)
4. 寻找两个有序数组的中位数 https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ 最简单的就是用最简单的,把两个数组分别抽出然 ...
- leetcode -- 寻找两个有序数组的中位数
题目: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nu ...
- 【LeetCode】寻找两个有序数组的中位数【性质分析+二分】
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2 ...
- LeetCode寻找两个有序数组的中位数
题目: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nu ...
随机推荐
- sqlserver关于发布订阅replication_subscription的总结
(转载)sqlserver关于发布订阅replication_subscription的总结 来自 “ ITPUB博客 ” ,原文地址:http://blog.itpub.net/30126024/v ...
- mysql的decimal(10,0) not null问题
今天排查一个bug发现开发环境老是报错 order_num 字段insert的时候不能为空,但是发现测试环境没有这个问题. 后来发现测试环境有一个数据库docker安装的mysql 版本是5.7 而 ...
- js安全类型检测
背景: 都知道js内置的类型检测,大多数情况下是不太可靠的,例如: typeof . instanceof typeof 返回一个未经计算的操作数的类型, 可以发现所有对象都是返回object ...
- 一个简单的创建xml方式
, matnr LIKE mara-matnr , maktx LIKE makt-maktx , END OF itab_matnr . , class LIKE m_wwgha-class,&qu ...
- 【踩坑经历】SQLSTATE[HY000] [2002] Connection refused
使用docker搭建lnmp环境,使用的是分容器的搭建方案 框架使用thinkphp,想要连接数据MySQL,一直显示"SQLSTATE[HY000] [2002] Connection r ...
- Delphi CloseHandle函数
- redis 的启动、关闭 判断其是否在运行中
#检查后台进程是否正在运行 ps -ef |grep redis ps aux | grep redis #检测6379端口是否在监听 netstat -lntp | grep 6379 #使用配置文 ...
- POM标签大全详解
父(Super) POM <project xmlns = "http://maven.apache.org/POM/4.0.0" xmlns:xsi = "htt ...
- C++虚函数作用原理(一)——虚函数如何在C++语言逻辑中存在
C++多态,接触其实也没太长的时间.上课的时候老师总是不停的讲,多态可以实现利用一个基类对象调用不同继承类的成员函数.我就会觉得很伤脑筋,这个的原理到底是什么?是什么呢? 开始的时候我觉得自己应该能够 ...
- 8.Dropout
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = in ...