lockfree buffer test
性能测试(3): 对无锁队列boost::lockfree::queue和moodycamel::ConcurrentQueue做一个性能对比测试
Brief
我们使用https://github.com/Qihoo360/evpp项目中的EventLoop::QueueInLoop(...)
函数来做这个性能测试。我们通过该函数能够将一个仿函数执行体从一个线程调度到另一个线程中执行。这是一个典型的生产者和消费者问题。
我们用一个队列来保存这种仿函数执行体。多个生产者线程向这个队列写入仿函数执行体,一个消费者线程从队列中取出仿函数执行体来执行。为了保证队列的线程安全问题,我们可以使用一个锁来保护这个队列,或者使用无锁队列机制来解决安全问题。EventLoop::QueueInLoop(...)
函数通过通定义实现了三种不同模式的跨线程交换数据的队列。
测试对象
- evpp-v0.3.2
EventLoop::QueueInLoop(...)
函数内的队列的三种实现方式:- 带锁的队列用
std::vector
和std::mutex
来实现,具体的 gcc 版本为 4.8.2 - boost::lockfree::queue from boost-1.53
- moodycamel::ConcurrentQueue with commit c54341183f8674c575913a65ef7c651ecce47243
- 带锁的队列用
测试环境
- Linux CentOS 6.2, 2.6.32-220.7.1.el6.x86_64
- Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
- gcc version 4.8.2 20140120 (Red Hat 4.8.2-15) (GCC)
测试方法
测试代码请参考https://github.com/Qihoo360/evpp/blob/master/benchmark/post_task/post_task6.cc. 在一个消费者线程中运行一个EventLoop
对象loop_
,多个生产者线程不停的调用loop_->QueueInLoop(...)
方法将仿函数执行体放入到消费者的队列中让其消费(执行)。每个生产者线程放入一定总数(由运行参数指定)的仿函数执行体之后就停下来,等消费者线程完全消费完所有的仿函数执行体之后,程序退出,并记录开始和结束时间。
为了便于大家阅读,现将相关代码的核心部分摘录如下。
event_loop.h中定义了队列:
std::shared_ptr<PipeEventWatcher> watcher_;
#ifdef H_HAVE_BOOST
boost::lockfree::queue<Functor*>* pending_functors_;
#elif defined(H_HAVE_CAMERON314_CONCURRENTQUEUE)
moodycamel::ConcurrentQueue<Functor>* pending_functors_;
#else
std::mutex mutex_;
std::vector<Functor>* pending_functors_; // @Guarded By mutex_
#endif
event_loop.cc中定义了QueueInLoop(...)
的具体实现:
void Init() {
watcher_->Watch(std::bind(&EventLoop::DoPendingFunctors, this));
}
void EventLoop::QueueInLoop(const Functor& cb) {
{
#ifdef H_HAVE_BOOST
auto f = new Functor(cb);
while (!pending_functors_->push(f)) {
}
#elif defined(H_HAVE_CAMERON314_CONCURRENTQUEUE)
while (!pending_functors_->enqueue(cb)) {
}
#else
std::lock_guard<std::mutex> lock(mutex_);
pending_functors_->emplace_back(cb);
#endif
}
watcher_->Notify();
}
void EventLoop::DoPendingFunctors() {
#ifdef H_HAVE_BOOST
Functor* f = nullptr;
while (pending_functors_->pop(f)) {
(*f)();
delete f;
}
#elif defined(H_HAVE_CAMERON314_CONCURRENTQUEUE)
Functor f;
while (pending_functors_->try_dequeue(f)) {
f();
--pending_functor_count_;
}
#else
std::vector<Functor> functors;
{
std::lock_guard<std::mutex> lock(mutex_);
notified_.store(false);
pending_functors_->swap(functors);
}
for (size_t i = 0; i < functors.size(); ++i) {
functors[i]();
}
#endif
}
我们进行了两种测试:
- 一个生产者线程投递1000000个仿函数执行体到消费者线程中执行,统计总耗时。然后同样的方法我们反复测试10次
- 生产者线程分别是2/4/6/8/12/16/20,每个线程投递1000000个仿函数执行体到消费者线程中执行,并统计总共耗时
测试结论
- 当我们只有生产者和消费者都只有一个时,大多数测试结果表明
moodycamel::ConcurrentQueue
的性能是最好的,大概比queue with std::mutex
高出10%~50%左右的性能。boost::lockfree::queue
比queue with std::mutex
的性能只能高出一点点。由于我们的实现中,必须要求能够使用多生产者的写入,所以并没有测试boost中专门的单生产者单消费者的无锁队列boost::lockfree::spsc_queue
,在这种场景下,boost稍稍有些吃亏,但并不影响整体测试结果及结论。 - 当我们有多个生产者线程和一个消费者线程时,
boost::lockfree::queue
的性能比queue with std::mutex
高出75%~150%左右。moodycamel::ConcurrentQueue
的性能最好,大概比boost::lockfree::queue
高出25%~100%,比queue with std::mutex
高出100%~500%。当生产者线程越多,也就是锁冲突概率越大时,moodycamel::ConcurrentQueue
的性能优势体现得更加明显。
因此,上述对比测试结论,就我们的evpp项目中的EventLoop
的实现方式,我们推荐使用moodycamel::ConcurrentQueue
来实现跨线程的数据交换。
更详细的测试数据,请参考下面的两个图表。
纵轴是执行耗时,越低性能越高。
图1,生产者和消费者都只有一个,横轴是测试的批次:
图2,生产者线程有多个,横轴是生产者线程的个数,分别是2/4/6/8/12/16/20:
其他的性能测试报告
The IO Event performance benchmark against Boost.Asio : evpp is higher than asio about 20%~50% in this case
The ping-pong benchmark against Boost.Asio : evpp is higher than asio about 5%~20% in this case
The throughput benchmark against libevent2 : evpp is higher than libevent about 17%~130% in this case
The performance benchmark of queue with std::mutex
against boost::lockfree::queue
and moodycamel::ConcurrentQueue
: moodycamel::ConcurrentQueue
is the best, the average is higher than boost::lockfree::queue
about 25%~100% and higher than queue with std::mutex
about 100%~500%
The throughput benchmark against Boost.Asio : evpp and asio have the similar performance in this case
The throughput benchmark against Boost.Asio(中文) : evpp and asio have the similar performance in this case
The throughput benchmark against muduo(中文) : evpp and muduo have the similar performance in this case
最后
报告中的图表是使用gochart绘制的。
非常感谢您的阅读。如果您有任何疑问,请随时在https://github.com/Qihoo360/evpp/issues跟我们讨论。谢谢。
lockfree buffer test的更多相关文章
- lockfree
为什么要lockfree 按我的理解, lockfree就是不去 调用操作系统给定的锁机制. 1. 会有system call, and system call is expensive; 比如pt ...
- Lock-Free 编程
文章索引 Lock-Free 编程是什么? Lock-Free 编程技术 读改写原子操作(Atomic Read-Modify-Write Operations) Compare-And-Swap 循 ...
- Lock-less buffer management scheme for telecommunication network applications
A buffer management mechanism in a multi-core processor for use on a modem in a telecommunications n ...
- 双buffer实现无锁切换
大家好,我是雨乐! 在我们的工作中,多线程编程是一件太稀松平常的事.在多线程环境下操作一个变量或者一块缓存,如果不对其操作加以限制,轻则变量值或者缓存内容不符合预期,重则会产生异常,导致进程崩溃.为了 ...
- 性能优化-使用双buffer实现无锁队列
借助本文,实现一种在"读多写一"场景下的无锁实现方式 在我们的工作中,多线程编程是一件太稀松平常的事.在多线程环境下操作一个变量或者一块缓存,如果不对其操作加以限制,轻则变量值或者 ...
- Node.js:Buffer浅谈
Javascript在客户端对于unicode编码的数据操作支持非常友好,但是对二进制数据的处理就不尽人意.Node.js为了能够处理二进制数据或非unicode编码的数据,便设计了Buffer类,该 ...
- java.IO输入输出流:过滤流:buffer流和data流
java.io使用了适配器模式装饰模式等设计模式来解决字符流的套接和输入输出问题. 字节流只能一次处理一个字节,为了更方便的操作数据,便加入了套接流. 问题引入:缓冲流为什么比普通的文件字节流效率高? ...
- 一点公益商城开发系统模式Ring Buffer+
一个队列如果只生产不消费肯定不行的,那么如何及时消费Ring Buffer的数据呢?简单的方案就是当Ring Buffer"写满"的时候一次性将数据"消费"掉. ...
- CSharpGL(38)带初始数据创建Vertex Buffer Object的情形汇总
CSharpGL(38)带初始数据创建Vertex Buffer Object的情形汇总 开始 总的来说,OpenGL应用开发者会遇到为如下三种数据创建Vertex Buffer Object的情形: ...
随机推荐
- 这是一个用于判断IE浏览器版本的紧凑脚本
这是一个用于判断IE浏览器版本的紧凑脚本IE浏览器,不管它们是什么版本,总是与Web标准有些不兼容.对于编码人员来说,这很困难.为了考虑IE的兼容性,不管它是写CSS还是写JS,IE通常都会被特殊处理 ...
- VS2012隐藏输出窗口的快捷键是什么。
纯属用键盘无法直接关闭这个窗口.有一个变通的方法是,先切换到这个输出窗口(标题呈现高亮的蓝色),使用Alt+W打开窗口菜单,选H隐藏就可以关闭.使用Ctrl+Alt+o可再次打开.按ESC就可以了.我 ...
- JAVA语言程序设计课后习题----第一单元解析(仅供参考)
1 本题是水题,基本的输出语句 public class test { public static void main(String[] args) { // 相邻的两个 "" 要 ...
- 小白进阶之Scrapy第六篇Scrapy-Redis详解(转)
Scrapy-Redis 详解 通常我们在一个站站点进行采集的时候,如果是小站的话 我们使用scrapy本身就可以满足. 但是如果在面对一些比较大型的站点的时候,单个scrapy就显得力不从心了. 要 ...
- 6、SSH远程管理服务实战
1.SSH基本概述 SSH是一个安全协议,在进行数据传输时,会对数据包进行加密处理,加密后在进行数据传输.确保了数据传输安全.那SSH服务主要功能有哪些呢? 1.提供远程连接服务器的服务. 2.对传输 ...
- 微信小程序开发(三)点击事件
接着上篇博客继续. 如下修改: // index.wxml <view>Hello World!</view> <button bindtap="but&quo ...
- 排序算法之快速排序QuickSort
挖坑填数-快速排序 1. left = L,right = R;将基准数挖出形成第一个坑s[left]; 2. right --; 由后向前找比它小的数,找到后挖出此数填前一个坑s[left]中. 3 ...
- NoSQL数据库技术实战-第1章 NoSQL与大数据简介 NoSQL数据库的类型
键值存储数据库临时性:如Memcached.临时性的键值数据库把数据存储在内存中,在两种情况下会造成上数据的丢失,一是断电,而是数据内容超出内存大小.这种处理的好处是非常快.永久型:如Tokyo Ty ...
- 09-sp_lock和sys.dm_tran_locks的用法
一.总结 1.网址 https://docs.microsoft.com/zh-cn/sql/relational-databases/system-stored-procedures/sp-lock ...
- PHP swoole TCP服务端和客户端
服务端 <?php $server = ,SWOOLE_PROCESS,SWOOLE_SOCK_TCP); $server->set(array( , )); $server->on ...