上一篇的模型保存和恢复熟练后,我们就可以大量使用 pretrain model 来训练任务了

Tweaking, Dropping, or Replacing the Upper Layers

The output layer of the original model should usually be replaced since it is most likely not useful at all for the new task, and it may not even have the right number of outputs for the new task.

Similarly, the upper hidden layers of the original model are less likely to be as useful as the lower layers, since the high-level features that are most useful for the new task may differ significantly from the ones that were most useful for the original task. You want to find the right number of layers to reuse.

Try freezing all the copied layers first, then train your model and see how it performs. Then try unfreezing one or two of the top hidden layers to let backpropagation tweak them and see if performance improves. The more training data you have, the more layers you can unfreeze.

If you still cannot get good performance, and you have little training data, try dropping the top hidden layer(s) and freeze all remaining hidden layers again. You can  iterate until you find the right number of layers to reuse. If you have plenty of training data, you may try replacing the top hidden layers instead of dropping them, and even add more hidden layers.

Model Zoos

Where can you find a neural network trained for a task similar to the one you want to tackle? The first place to look is obviously in your own catalog of models. This is one good reason to save all your models and organize them so you can retrieve them later easily. Another option is to search in a model zoo. Many people train Machine Learning models for various tasks and kindly release their pretrained models to the public.

TensorFlow has its own model zoo available at https://github.com/tensorflow/models. In particular, it contains most of the state-of-the-art image classification nets such as VGG, Inception, and ResNet (see Chapter 13, and check out the models/slim directory), including the code, the pretrained models, and tools to download popular image datasets.

Another popular model zoo is Caffe’s Model Zoo. It also contains many computer vision models (e.g., LeNet, AlexNet, ZFNet, GoogLeNet, VGGNet, inception) trained on various datasets (e.g., ImageNet, Places Database, CIFAR10, etc.). Saumitro Dasgupta wrote a converter, which is available at https://github.com/ethereon/caffe-tensorflow.

TensorFlow使用记录 (十): Pretraining的更多相关文章

  1. TensorFlow使用记录 (十四): Multi-task to MNIST + Fashion MNIST

    前言 后面工作中有个较重要的 task 是将 YOLOV3 目标检测和 LanNet 车道线检测和到一个网络中训练,特别的是,这两部分数据来自于不同的数据源.这和我之前在 caffe 环境下训练检测整 ...

  2. TensorFlow使用记录 (十二): ℓ1 and ℓ2 Regularization

    实现方式 以 ℓ2 Regularization 为例,主要有两种实现方式 1. 手动累加 with tf.name_scope('loss'): loss = tf.losses.softmax_c ...

  3. TensorFlow使用记录 (六): 优化器

    0. tf.train.Optimizer tensorflow 里提供了丰富的优化器,这些优化器都继承与 Optimizer 这个类.class Optimizer 有一些方法,这里简单介绍下: 0 ...

  4. Tensorflow安装记录

    一.安装Ubantu环境 下载ios 网址:http://cn.ubuntu.com/download/ 2.配合虚拟机进行安装环境 虚拟机直接百度下载即可 虚拟机采用 具体安装,虚拟机百度中很多记录 ...

  5. linux 配置tensorflow 全过程记录

    前几天刚下一个deepin系统,是基于linux 内核的,界面的设计有些mac的feel 感觉还是挺不错的,之后就赶紧配置了一下tensorflow ,尽管之前配置过,但是这次还是遇到点儿问题,所以说 ...

  6. Spring学习记录(十四)---JDBC基本操作

    先看一些定义: 在Spring JDBC模块中,所有的类可以被分到四个单独的包:1.core即核心包,它包含了JDBC的核心功能.此包内有很多重要的类,包括:JdbcTemplate类.SimpleJ ...

  7. TensorFlow学习记录(一)

    windows下的安装: 首先访问https://storage.googleapis.com/tensorflow/ 找到对应操作系统下,对应python版本,对应python位数的whl,下载. ...

  8. windows10下TensorFlow安装记录

    1.安装anaconda 安装最新版:https://repo.anaconda.com/archive/Anaconda3-5.3.0-Windows-x86_64.exe 加入环境变量: path ...

  9. tensorflow简单记录summary方法

    虽然tf官方希望用户把 train , val 程序分开写,但实际开发中,明显写在一起比较简单舒服,但在保存数据到 summary 时, val 部分和 train 部分不太一样,会有一些问题,下面讨 ...

随机推荐

  1. Where is __dso_handle defined?

    Where is __dso_handle defined? 来源  https://stackoverflow.com/questions/34308720/where-is-dso-handle- ...

  2. O051、Create Volume 操作 (Part II)

    参考https://www.cnblogs.com/CloudMan6/p/5612147.html       1.cinder-scheduler 也会启动一个工作流 volume_create_ ...

  3. 豆瓣网post 爬取带验证码

    # -*- coding: utf- -*- import scrapy import requests from ..bao.jiema import get_number fromdata = { ...

  4. dom和bom之间的区别

    BOM的核心是windows,表示的是一个浏览器的实例,在网页中自定义的任何一个对象.变量和函数,都以windows作为其全局对象 DOM是针对HTML和XML文档的一个API bom:(Browse ...

  5. React+Redux+Dva学习

    Redux提供一些api来管理数据,并且只能通过它提供的方式来修改.Redux包括三个部分:store, action,reducer. store:是一个规范的state,就像一个有条理的数据库,R ...

  6. java基础3(异常)

    1.异常的体系 1)请描述异常的继承体系 异常继承体系为:异常的根类是 java.lang.Throwable,其下有两个子类:java.lang.Error 与 java.util.Exceptio ...

  7. JPanel实现滚动条

    之前一直用JScrollPane里面放一个JTextArea,就可以在文本框内实现滚动条. 但是最近做一个小demo,需要在JPanel中实现滚动条,就找了下资料,做好了,现在记录一下,防止以后再用到 ...

  8. JVM类加载机制和内存模型

    一.JVM类加载机制 首先需要了解一下类加载器(ClassLoader): ClassLoader是Java的一个核心组件,它主要作用是从系统外部获得Class二进制数据流,然后将数据流装载到系统,交 ...

  9. Windows live Writer Tips

    http://lehsys.blogspot.com/2013/03/windows-live-writer-how-to-change.html http://www.carlosag.net/to ...

  10. 构建虚拟工控环境系列 - 罗克韦尔虚拟PLC

    一. 概述 本篇主要介绍罗克韦尔虚拟PLC的搭建,使用的操作系统为Windows7 x86 Ultimate(DEEP_GHOST_WIN7_SP1_X86_V2015_06.iso),虚拟化软件为 ...