BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)
分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和)。然后由于1所在强连通分量和1+n所在强联通分量是相同的点,所以路径长度相当于有一头不计算,也就是一个半开半闭区间的形式。
最后还可能答案不用跑反向边,取一个较大值就行了
CODE
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
const int MAXM = 300005;
int n, m, fir[MAXN], to[MAXM], nxt[MAXM], cnt, deg[MAXN], f[MAXN];
int dfn[MAXN], low[MAXN], tmr, q[MAXN], indx, scc[MAXN], tot, num[MAXN];
void tarjan(int u) {
dfn[u] = low[u] = ++tmr;
q[++indx] = u;
for(int i = fir[u], v; i; i = nxt[i])
if(!dfn[v=to[i]]) tarjan(v), low[u] = min(low[u], low[v]);
else if(!scc[v]) low[u] = min(low[u], dfn[v]);
if(dfn[u] == low[u]) {
++tot;
do ++num[scc[q[indx]] = tot];
while(q[indx--] != u);
}
}
inline void link(int u, int v) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt;
}
vector<int>G[MAXN];
int main () {
scanf("%d%d", &n, &m);
for(int i = 1, x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
link(x, y);
link(y, x+n);
link(x+n, y+n);
}
tarjan(1);
for(int i = 1; i <= 2*n; ++i) if(dfn[i])
for(int k = fir[i], j; k; k = nxt[k])
if(scc[i] != scc[j=to[k]])
G[scc[i]].push_back(scc[j]), ++deg[scc[j]];
int l = 0, r = 0;
for(int i = 1; i <= tot; ++i) {
if(!deg[i]) q[r++] = i;
f[i] = -0x3f3f3f3f;
}
while(l < r) {
int u = q[l++]; if(u == scc[1]) f[u] = 0;
for(int i = 0, v, siz = G[u].size(); i < siz; ++i) {
if(!--deg[v=G[u][i]]) q[r++] = v;
f[v] = max(f[v], f[u] + num[v]);
}
}
printf("%d\n", max(f[scc[n+1]], num[scc[1]]));
}
这样的两分层图可以拓展到多层,网络流用的比较多吧。
BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)的更多相关文章
- BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...
- bzoj3887: [Usaco2015 Jan]Grass Cownoisseur
题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...
- [补档][Usaco2015 Jan]Grass Cownoisseur
[Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...
- BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*
BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...
- 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur
http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...
- BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa
Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...
- [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA
考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...
- [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa
先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...
- BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]
首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...
随机推荐
- 分布式架构下,session共享有什么方案么?
分布式架构下,session共享有什么方案么? 会点代码的大叔 科技领域创作者 分布式架构下的session共享,也可以称作分布式session一致性:关于这个问题,和大家说一说解决方案(如果有其他的 ...
- Appium移动端自动化测试--元素操作与触摸动作
常见自动化动作支持 click sendKeys swipe touch action 元素操作 1.click()点击操作 也可以用tab实现点击操作 driver.find_element_by_ ...
- go 函数 命名返回值
Go 的返回值可以被命名,并且像变量那样使用. 返回值的名称应当具有一定的意义,可以作为文档使用. 没有参数的 return 语句返回结果的当前值.也就是`直接`返回. 直接返回语句仅应当用在像下面这 ...
- raise ImproperlyConfigured('mysqlclient 1.3.13 or newer is required; you have %s.' % Database.__version__)
转自:http://www.cnblogs.com/xiaobinglife/articles/10716605.html 一.Django数据同步过程中遇到的问题: 1.raise Improper ...
- 使用RabbitMQ实现分布式事务
RabbitMQ解决分布式事务思路: 案例: 经典案例,以目前流行点外卖的案例,用户下单后,调用订单服务,让后订单服务调用派单系统通知送外卖人员送单,这时候订单系统与派单系统采用MQ异步通讯. Rab ...
- outlook 升级 及邮件同步方式设置
**office(outlook2010 32B)升级到office2016 64B时的操作 1.删除office(excel. word等) 2.选择offcie2016 安装程序安装 (outlo ...
- (五)Maven中的聚合和继承
一.为什么要聚合? 定义:我们在开发过程中,创建了2个以上的模块,每个模块都是一个独立的maven project,在开始的时候我们可以独立的编译和测试运行每个模块,但是随着项目的不断变大和复杂化,我 ...
- 微信小程序wx:key以及wx:key=" *this"详解:
今天写微信小程序无意中看到控制台给出了这样一行提示: 求解百度才知道,给大家分享一下: 1.wx:for定义 官方文档:在组件上使用 wx:for 控制属性绑定一个数组,即可使用数组中各项的数据重复渲 ...
- c#基础知识梳理(五)
上期回顾 - https://www.cnblogs.com/liu-jinxin/p/10831189.html 一.运算符重载 您可以重定义或重载 C# 中内置的运算符.因此,程序员也可以使用用户 ...
- Python处理session最简单的方法
前言: 不管是在做接口自动化还是在做UI自动化,测试人员遇到的第一个问题都是卡在登录上. 那是因为在执行登录的时候,服务端会有一种叫做session的会话机制. 一个很简单的例子: 在做功能测试的时候 ...