洛谷P1169 棋盘制作【悬线法】【区间dp】
题目:https://www.luogu.org/problemnew/show/P1169
题意:n*m的黑白格子,找到面积最大的黑白相间的正方形和矩形。
思路:传说中的悬线法!用下面这张图说明一下。
悬线法一般是用来求一个没有障碍点的最大子矩阵的。想象从上面垂下来好多的悬线,这些悬线被一个底所限制,并且可以左右移动但是也有范围限制。
现在某条悬线可以移动到的面积就是他能满足的子矩形的面积。比如我们已经处理好了$i-1$行,现在考虑$(i,j)$
对于这道题来说,如果$grid[i][j]!=grid[i-1][j]$就说明他们黑白颜色不同,那么这个以$i$行为底的悬线的高度就是$height[i-1][j]+1$
接下来我们考虑他的左右范围
首先我们可以需要预处理出每个位置可以到的左右范围,比如说$lft[i][j]$就是从$(i,j)$开始往左满足左右相间可以一直到第几列。
当我们要扩展一行的时候对于左边界只能取最右边的一个,对于右边界只能取最左边的。
#include<cstdio>
#include<cstdlib>
#include<map>
#include<set>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stack>
#include<queue>
#include<iostream> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
typedef pair<int, int> pr; int n, m;
const int maxn = ;
int grid[maxn][maxn];
int lft[maxn][maxn], rgt[maxn][maxn], height[maxn][maxn]; int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d", &grid[i][j]);
lft[i][j] = rgt[i][j] = j;
height[i][j] = ;
}
} for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(grid[i][j] != grid[i][j - ]){
lft[i][j] = lft[i][j - ];
}
}
for(int j = m - ; j > ; j--){
if(grid[i][j] != grid[i][j + ]){
rgt[i][j] = rgt[i][j + ];
}
}
} int anssqu = , ansrec = ;
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(i > && grid[i][j] != grid[i - ][j]){
lft[i][j] = max(lft[i][j], lft[i - ][j]);
rgt[i][j] = min(rgt[i][j], rgt[i - ][j]);
height[i][j] = height[i - ][j] + ;
}
int row = rgt[i][j] - lft[i][j] + ;
int col = min(row, height[i][j]);
anssqu = max(anssqu, col * col);
ansrec = max(ansrec, row * height[i][j]);
}
} printf("%d\n%d\n", anssqu, ansrec);
}
洛谷P1169 棋盘制作【悬线法】【区间dp】的更多相关文章
- 洛谷P1169 棋盘制作(悬线法)
题目链接:https://www.luogu.org/problemnew/show/P1169 #include<bits/stdc++.h> #define fi first #def ...
- [P1169] 棋盘制作 &悬线法学习笔记
学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
- P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
- P1169 [ZJOI2007]棋盘制作——悬线法
---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...
- P1169 [ZJOI2007]棋盘制作 悬线法or单调栈
思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
随机推荐
- [转帖]MMU内存管理单元
MMU内存管理单元 https://www.cnblogs.com/alantu2018/p/9002309.html 之前对这一块一直不理解 最近学习了点 CPU time slice 以及 con ...
- java日志框架系列(9):logback框架过滤器(filter)详解
过滤器放在了logback-classic模块中. 1.logback-classic模块中过滤器 分类(2种):常规过滤器.TurboFilter过滤器. 1.常规过滤器 常规过滤器可以通过自定义进 ...
- Python之对象持久化笔记
pickle 序列化为字符串 .dumps(obj): 将对象序列为字符串 .loads(s): 从字符串反序列化对象 例如 import pickle person = {'name': 'Tom' ...
- Python使用datetime来判断近七天
目录 strptime 使用strptime来格式化字符串 datetime.datetime.strptime("2019-10-02", "%Y-%m-%d" ...
- localStorage存取储数组。(存对象同理)
var array = ['111','222','333','444','555']; 存window.localStorage.setItem('array',JSON.stringify(arr ...
- ...:ES6中扩展运算符(spread)和剩余运算符(rest)详解
1.扩展运算符(spread) demo1:传递数据代替多个字符串的形式 let test= function(a,b,c){ console.log(a); console.log(b); cons ...
- (七)Redis之Keys的通用操作
package myRedis01; import java.util.HashMap; import java.util.List; import java.util.Map; import jav ...
- android 自动化测试案例之 MonkeyRunner
#-*- coding: UTF-8 -*- #上面第一行是设置文件编码,windows下第一行必须是这个#文件名 MonkeyRunner.py#功能: 使用monkey runner测试app,此 ...
- SQL 不同服务器数据库操作
https://www.cnblogs.com/lusunqing/p/3660190.html --创建远程链接服务器 execute sys.sp_addlinkedserver @server= ...
- Linux 命令实战
命令登录 ssh UserName@RemoteIP ssh seemmo@192.168.0.1 统计文件.目录的数量 统计当前目录下文件数量:ls -l | grep "^- ...