Redis4.0新增了非常实用的lazy free特性,从根本上解决Big Key(主要指定元素较多集合类型Key)删除的风险。笔者在redis运维中也遇过几次Big Key删除带来可用性和性能故障。
本文分为以下几节说明redis lazy free:

  • lazy free的定义
  • 我们为什么需要lazy free
  • lazy free的使用
  • lazy free的监控
  • lazy free实现的简单分析

lazy free的定义

lazy free可译为惰性删除或延迟释放;当删除键的时候,redis提供异步延时释放key内存的功能,把key释放操作放在bio(Background I/O)单独的子线程处理中,减少删除big key对redis主线程的阻塞。有效地避免删除big key带来的性能和可用性问题。

我们为什么需要lazy free

Redis是single-thread程序(除少量的bio任务),当运行一个耗时较大的请求时,会导致所有请求排队等待redis不能响应其他请求,引起性能问题,甚至集群发生故障切换。

而redis删除大的集合键时,就属于这类比较耗时的请求。通过测试来看,删除一个100万个元素的集合键,耗时约1000ms左右。
以下测试,删除一个100万个字段的hash键,耗时1360ms;处理此DEL请求期间,其他请求完全被阻塞。

删除一个100万字段的hash键
127.0.0.1:6379> HLEN hlazykey
(integer) 1000000
127.0.0.1:6379> del hlazykey
(integer) 1
(1.36s)
127.0.0.1:6379> SLOWLOG get
1) 1) (integer) 0
2) (integer) 1501314385
3) (integer) 1360908
4) 1) "del"
2) "hlazykey"
5) "127.0.0.1:35595"
6) “"

测试估算,可参考;和硬件环境、Redis版本和负载等因素有关

Key类型 Item数量 耗时
Hash ~100万 ~1000ms
List ~100万 ~1000ms
Set ~100万 ~1000ms
Sorted Set ~100万 ~1000ms

在redis4.0前,没有lazy free功能;DBA只能通过取巧的方法,类似scan big key,每次删除100个元素;但在面对“被动”删除键的场景,这种取巧的删除就无能为力。
例如:我们生产Redis Cluster大集群,业务缓慢地写入一个带有TTL的2000多万个字段的Hash键,当这个键过期时,redis开始被动清理它时,导致redis被阻塞20多秒,当前分片主节点因20多秒不能处理请求,并发生主库故障切换。

redis4.0有lazy free功能后,这类主动或被动的删除big key时,和一个O(1)指令的耗时一样,亚毫秒级返回; 把真正释放redis元素耗时动作交由bio后台任务执行。

lazy free的使用

lazy free的使用分为2类:第一类是与DEL命令对应的主动删除,第二类是过期key删除、maxmemory key驱逐淘汰删除。

主动删除键使用lazy free

UNLINK命令

UNLINK命令是与DEL一样删除key功能的lazy free实现。
唯一不同时,UNLINK在删除集合类键时,如果集合键的元素个数大于64个(详细后文),会把真正的内存释放操作,给单独的bio来操作。
示例如下:使用UNLINK命令删除一个大键mylist, 它包含200万个元素,但用时只有0.03毫秒

127.0.0.1:7000> LLEN mylist
(integer) 2000000
127.0.0.1:7000> UNLINK mylist
(integer) 1
127.0.0.1:7000> SLOWLOG get
1) 1) (integer) 1
2) (integer) 1505465188
3) (integer) 30
4) 1) "UNLINK"
2) "mylist"
5) "127.0.0.1:17015"
6) ""

注意:DEL命令,还是并发阻塞的删除操作

FLUSHALL/FLUSHDB ASYNC

通过对FLUSHALL/FLUSHDB添加ASYNC异步清理选项,redis在清理整个实例或DB时,操作都是异步的。

127.0.0.1:7000> DBSIZE
(integer) 1812295
127.0.0.1:7000> flushall //同步清理实例数据,180万个key耗时1020毫秒
OK
(1.02s)
127.0.0.1:7000> DBSIZE
(integer) 1812637
127.0.0.1:7000> flushall async //异步清理实例数据,180万个key耗时约9毫秒
OK
127.0.0.1:7000> SLOWLOG get
1) 1) (integer) 2996109
2) (integer) 1505465989
3) (integer) 9274 //指令运行耗时9.2毫秒
4) 1) "flushall"
2) "async"
5) "127.0.0.1:20110"
6) ""

被动删除键使用lazy free

lazy free应用于被动删除中,目前有4种场景,每种场景对应一个配置参数; 默认都是关闭。

lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
slave-lazy-flush no

注意:从测试来看lazy free回收内存效率还是比较高的; 但在生产环境请结合实际情况,开启被动删除的
lazy free 观察redis内存使用情况。

lazyfree-lazy-eviction

针对redis内存使用达到maxmeory,并设置有淘汰策略时;在被动淘汰键时,是否采用lazy free机制;
因为此场景开启lazy free, 可能使用淘汰键的内存释放不及时,导致redis内存超用,超过maxmemory的限制。此场景使用时,请结合业务测试。

lazyfree-lazy-expire --todo 验证这类操作 同步到从库的是DEL还是UNLINK.

针对设置有TTL的键,达到过期后,被redis清理删除时是否采用lazy free机制;
此场景建议开启,因TTL本身是自适应调整的速度。

lazyfree-lazy-server-del

针对有些指令在处理已存在的键时,会带有一个隐式的DEL键的操作。如rename命令,当目标键已存在,redis会先删除目标键,如果这些目标键是一个big key,那就会引入阻塞删除的性能问题。 此参数设置就是解决这类问题,建议可开启。

slave-lazy-flush

针对slave进行全量数据同步,slave在加载master的RDB文件前,会运行flushall来清理自己的数据场景,
参数设置决定是否采用异常flush机制。如果内存变动不大,建议可开启。可减少全量同步耗时,从而减少主库因输出缓冲区爆涨引起的内存使用增长。

lazy free的监控

lazy free能监控的数据指标,只有一个值:lazyfree_pending_objects,表示redis执行lazy free操作,在等待被实际回收内容的键个数。并不能体现单个大键的元素个数或等待lazy free回收的内存大小。
所以此值有一定参考值,可监测redis lazy free的效率或堆积键数量; 比如在flushall async场景下会有少量的堆积。

lazy free实现的简单分析

antirez为实现lazy free功能,对很多底层结构和关键函数都做了修改;该小节只介绍lazy free的功能实现逻辑;代码主要在源文件lazyfree.c和bio.c中。

UNLINK命令

unlink命令入口函数unlinkCommand()和del调用相同函数delGenericCommand()进行删除KEY操作,使用lazy标识是否为lazyfree调用。如果是lazyfree,则调用dbAsyncDelete()函数。
但并非每次unlink命令就一定启用lazy free,redis会先判断释放KEY的代价(cost),当cost大于LAZYFREE_THRESHOLD才进行lazy free.
释放key代价计算函数lazyfreeGetFreeEffort(),集合类型键,且满足对应编码,cost就是集合键的元数个数,否则cost就是1.
�举例:
1 一个包含100元素的list key, 它的free cost就是100
2 一个512MB的string key, 它的free cost是1
所以可以看出,redis的lazy free的cost计算主要时间复杂度相关。

lazyfreeGetFreeEffort()函数代码

size_t lazyfreeGetFreeEffort(robj *obj) {
if (obj->type == OBJ_LIST) {
quicklist *ql = obj->ptr;
return ql->len;
} else if (obj->type == OBJ_SET && obj->encoding == OBJ_ENCODING_HT) {
dict *ht = obj->ptr;
return dictSize(ht);
} else if (obj->type == OBJ_ZSET && obj->encoding == OBJ_ENCODING_SKIPLIST){
zset *zs = obj->ptr;
return zs->zsl->length;
} else if (obj->type == OBJ_HASH && obj->encoding == OBJ_ENCODING_HT) {
dict *ht = obj->ptr;
return dictSize(ht);
} else {
return 1; /* Everything else is a single allocation. */
}
}

dbAsyncDelete()函数的部分代码

#define LAZYFREE_THRESHOLD 64 //根据FREE一个key的cost是否大于64,用于判断是否进行lazy free调用
int dbAsyncDelete(redisDb *db, robj *key) {
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr); //从expires中直接删除key dictEntry *de = dictUnlink(db->dict,key->ptr); //进行unlink处理,但不进行实际free操作
if (de) {
robj *val = dictGetVal(de);
size_t free_effort = lazyfreeGetFreeEffort(val); //评估free当前key的代价 /* If releasing the object is too much work, let's put it into the
* lazy free list. */
if (free_effort > LAZYFREE_THRESHOLD) { //如果free当前key cost>64, 则把它放在lazy free的list, 使用bio子线程进行实际free操作,不通过主线程运行
atomicIncr(lazyfree_objects,1); //待处理的lazyfree对象个数加1,通过info命令可查看
bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL);
dictSetVal(db->dict,de,NULL);
}
} }

在bio中实际调用lazyfreeFreeObjectFromBioThread()函数释放key

void lazyfreeFreeObjectFromBioThread(robj *o) {
decrRefCount(o); //更新对应引用,根据不同类型,调用不同的free函数
atomicDecr(lazyfree_objects,1); //完成key的free,更新待处理lazyfree的键个数
}

flushall/flushdb async命令

当flushall/flushdb带上async,函数emptyDb()调用emptyDbAsync()来进行整个实例或DB的lazy free逻辑处理。
emptyDbAsync处理逻辑如下:

/* Empty a Redis DB asynchronously. What the function does actually is to
* create a new empty set of hash tables and scheduling the old ones for
* lazy freeing. */
void emptyDbAsync(redisDb *db) {
dict *oldht1 = db->dict, *oldht2 = db->expires; //把db的两个hash tables暂存起来
db->dict = dictCreate(&dbDictType,NULL); //为db创建两个空的hash tables
db->expires = dictCreate(&keyptrDictType,NULL);
atomicIncr(lazyfree_objects,dictSize(oldht1)); //更新待处理lazyfree的键个数,加上db的key个数
bioCreateBackgroundJob(BIO_LAZY_FREE,NULL,oldht1,oldht2);//加入到bio list
}

在bio中实际调用lazyfreeFreeDatabaseFromBioThread函数释放db

void lazyfreeFreeDatabaseFromBioThread(dict *ht1, dict *ht2) {
size_t numkeys = dictSize(ht1);
dictRelease(ht1);
dictRelease(ht2);
atomicDecr(lazyfree_objects,numkeys);//完成整个DB的free,更新待处理lazyfree的键个数
}

被动删除键使用lazy free

被动删除4个场景,redis在每个场景调用时,都会判断对应的参数是否开启,如果参数开启,则调用以上对应的lazy free函数处理逻辑实现。

总结

因为Redis是单个主线程处理,antirez一直强调"Lazy Redis is better Redis".
而lazy free的本质就是把某些cost(主要时间复制度,占用主线程cpu时间片)较高删除操作,从redis主线程剥离,让bio子线程来处理,极大地减少主线阻塞时间。从而减少删除导致性能和稳定性问题。

参考:
http://antirez.com/news/93

Redis4.0新特性 -Lazy Free的更多相关文章

  1. Redis4.0新特性

    redis 4.0 新特性 Redis 4.0在2017年7月发布为GA.包含几个重大改进:更好的复制(PSYNC2),线程DEL / FLUSH,混合RDB + AOF格式,活动内存碎片整理,内存使 ...

  2. Redis4.0新特性之-大KEY删除

    接上一篇,我们得知了redis中存在大KEY,那么这个大KEY如何删除呢?本文将从源码角度分析Redis4.0带来的新特性. 在Redis中,对于大KEY的删除一直是个比较头疼的问题,为了不影响服务, ...

  3. Redis4.0新特性(一)-Memory Command

    Redis4.0版本增加了很多诱人的新特性,在redis精细化运营管理中都非常有用(猜想和antirez加入redislabs有很大关系):此系列几篇水文主要介绍以下几个新特性的使用和效果. Redi ...

  4. 【特性】Redis4.0新特性

    模块系统 Redis 4.0 发生的最大变化就是加入了模块系统, 这个系统可以让用户通过自己编写的代码来扩展和实现 Redis 本身并不具备的功能, 具体使用方法可以参考 antirez 的博文< ...

  5. Redis 6.0 新特性-多线程连环13问!

    Redis 6.0 来了 在全国一片祥和IT民工欢度五一节假日的时候,Redis 6.0不声不响地于5 月 2 日正式发布了,吓得我赶紧从床上爬起来,学无止境!学无止境! 对于6.0版本,Redis之 ...

  6. 浅谈Tuple之C#4.0新特性那些事儿你还记得多少?

    来源:微信公众号CodeL 今天给大家分享的内容基于前几天收到的一条留言信息,留言内容是这样的: 看了这位网友的留言相信有不少刚接触开发的童鞋们也会有同样的困惑,除了用新建类作为桥梁之外还有什么好的办 ...

  7. Java基础和JDK5.0新特性

    Java基础 JDK5.0新特性 PS: JDK:Java Development KitsJRE: Java Runtime EvironmentJRE = JVM + ClassLibary JV ...

  8. Visual Studio 2015速递(1)——C#6.0新特性怎么用

    系列文章 Visual Studio 2015速递(1)——C#6.0新特性怎么用 Visual Studio 2015速递(2)——提升效率和质量(VS2015核心竞争力) Visual Studi ...

  9. atitit.Servlet2.5 Servlet 3.0 新特性 jsp2.0 jsp2.1 jsp2.2新特性

    atitit.Servlet2.5 Servlet 3.0 新特性 jsp2.0 jsp2.1 jsp2.2新特性   1.1. Servlet和JSP规范版本对应关系:1 1.2. Servlet2 ...

随机推荐

  1. Idea中Module is not specified解决办法

    打开idea,想跑一个类,但是,给我报了一个红叉: 当我点击run的时候,弹出来一个框: “Error:Module not specified”  Module 未指定 “这个原因是项目文件夹有修改 ...

  2. 题解 [BZOJ4710] 分特产

    题面 解析 step 1 我们先考虑下有人没有的情况吧, 那对于每个特产就是放隔板的情况了, 设\(a[i]\)为第\(i\)个特产的个数, 那么第\(i\)个特产的方案数就是\(C_{a[i]+n- ...

  3. 02 CSS和DIV对界面优化

    01 网站首页的优化 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> &l ...

  4. input 设置长度限制 去除默认样式

    1. <input id="mobile" maxlength="11> 2. input type 为 number 时,maxlength 失效 < ...

  5. 制作自己的livecd

    把现有ubuntu系统打包,迁移到另外一台硬件一模一样的机器上. https://zhuanlan.zhihu.com/p/51827233 https://blog.csdn.net/vah101/ ...

  6. C# Unicode编码解码

    public static class CommpnHelpEx { /// <summary> /// unicode编码 /// </summary> /// <pa ...

  7. Linux 上的Tomcat配置输入域名直接访问项目

    申请的域名备案通过了,域名是在阿里云上面的买的,一块钱,当初买服务器是买着来玩玩的. 既然申请的域名已经备案通过了,也配置了域名解析 ,服务器上也装了Tomcat,部署了web项目,下面来配置下通过域 ...

  8. ARTS打卡计划第十五周

    Algorithms: https://leetcode-cn.com/problems/single-number/submissions/ Review: “What Makes a Good D ...

  9. php多线程的概念

    来源:http://www.cnblogs.com/zhenbianshu/p/7978835.html 多线程 线程 首先说下线程: 线程(thread) 是操作系统能够进行运算调度的最小单位.它被 ...

  10. redis 字符串数据(string)

    Redis 字符串数据类型的相关命令用于管理 redis 字符串值,基本语法如下: 语法 redis 127.0.0.1:6379> COMMAND KEY_NAME 实例 redis 127. ...