分布式协调技术Zookeeper

2.1 zookeeper集群安装部署(略)

  2.2 zookeeper的基本原理,数据模型

  2.3 zookeeper Java api的使用

  2.4 zookeeper实际应用场景分析及实战

  2.5 zookeeper+dubbo的实战练习(略)


zookeeper的基本原理,数据模型:

dubbo的服务注册中心就是基于zookeeper。zookeeper是一种分布式协调服务(可以在分布式系统中共享配置,协调锁资源,提供命名服务)。

zookeeper的目标:封装好复杂易出错的关键职务,将简单易用的接口和性能高效、功能稳定的系统提供给用户;

zookeeper的特点:

  • 最终一致性:为客户端展示同一视图,这是Zookeeper最重要的性能;
  • 可靠性:如果消息被一台服务器接受,那么它将被所有的服务器接受;
  • 原子性:更新只能成功或失败,没有中间状态;

zookeeper的数据结构:zookeeper的数据存储是基于节点,叫Znode;它的引用方式是路径引用,类似于文件路径;Znode包含数据,子节点引用,访问权限等;

data:

Znode存储的数据信息。

ACL:

记录Znode的访问权限,即哪些人或哪些IP可以访问本节点。

stat:

包含Znode的各种元数据,比如事务ID、版本号、时间戳、大小等等。

child:

当前节点的子节点引用,类似于二叉树的左孩子右孩子。

  需注意:zookeeper是为读多写少的场景所设计的,Znode并不是用来存储大规模业务数据的,而是用于存储少量的状态和配置信息的,每个节点的数据最大不能超过1MB;

Znode分为四种类型:

  1.持久节点:默认的节点类型,创建节点的客户端和zookeeper断开连接后,该节点一直存在

  2.持久节点顺序节点:创建节点时,zookeeper根据创建的时间顺序给该节点名称进行编号

  3.临时节点:当创建节点的客户端和zookeeper断开连接后,临时节点就会被删除

  4.临时顺序节点:根据创建时间排序的临时节点

如何实现分布式一致性:为防止单机挂掉的情况,Zookeeper维护了一个集群,如图所示:

zookeeper的集群是一主多从的结构,在更新数据时,首先更新到主节点(主节点:服务器,不是Znode),再同步到从节点;在读取数据时,直接读取任意从节点

为了保证主从节点的数据一致性,zookeeper采用了ZAB协议,这种协议非常类似于一致性算法Paxos和Raft

  ZAB(Zookeeper Atomic Broadcast):有效解决Zookeeper集群崩溃恢复,以及主从同步数据的问题;

ZAB协议是单调一致性,依靠事物ID和版本号,保证了数据的更新和读取是有序的;

ZAB协议所定义的三种节点状态:looking(选举状态),following(follower节点所处的状态),leading(leader节点所处的状态)

  ZXID:节点本地的最新事物编号,包含epoch和计数两部分;epoch是纪元的意思,相当于Raft算法选主时的term  

  ------假如zookeeper当前的主节点挂掉了,集群会进行崩溃恢复:

  阶段一:

      leader election:选举阶段,此时集群中的节点处于looking状态,它们会各自向其他节点发起投票,投票当中包含自己的服务器ID和最新事物ID(zxid)节点自身会与从其他节点接收到的zxid做对比,对方大则对方数据更新,则重新发起投票,投票给目前已知最大的zxid所属节点每次投票后,服务器都会统计投票数,判断是否有某个节点得到半数以上的投票,如果存在,该节点变为leader,状态变为leading,其他则为following

  阶段二:

      Discovery:发现阶段,用于从节点中发现最新的zxid和事物日志,为防止某些意外情况产生多个leader。如果出现两个准leader,都会发出new epoch消息给各个Follower,必然有一个Leader的 epoch并不是最新的。Follower发现接收的epoch没有自身保存的epoch新,就会重新变为Looking状态,重新寻找真正的Leader。所以这一阶段,leader接收所有来自follower发来的各自最新的epoch值,leader从中选出最大的epoch,基于此值加1,生成新的epoch分发给各个follower,各个follower接收到全新的epoch后,返回ACK给leader,带上各自最大的zxid和历史事物日志。leader选出最大的zxid,并更新自身历史日志

  阶段三:

      Synchronization:同步阶段,把leader刚收集到的最新历史事物日志,同步给集群中所有的follower,只有半数follower同步成功,这个准leader才能称为正式leader自此,故障恢复正式完成。

  ------ZAB实现写入数据,涉及ZAB协议的Broadcast阶段:Zookeeper常规情况下更新数据的时候,由leader广播到所有follower

    •  客户端发出写入数据请求给任意follower
    •  follower把写入数据请求转法给leader
    •  leader采用二阶段提交方式,先发送propose广播给follower
    •  follower接到propose消息,写入日志成功后,返回ACK消息给leader
    •  leader接到半数以上ACK消息,返回成功给客户端,并且广播commit请求给follower

都有哪些应用场景:

    •  分布式锁
    •  服务注册和发现:利用Znode和Watcher,可以实现分布式服务的注册和发现,如dubbo
    •  共享配置和状态信息:redis的分布式解决方案codis,利用了zookeeper来存放数据路由表和codis-proxy节点的元信息。同时codis-config发起的命令都会通过zookeeper同步到各个存活的codis-proxy

   此外kafka,hbase,hadoop,也都依靠zookeeper同步节点信息,实现高可用

zookeeper Java api的使用

create:创建节点 ;

delete:删除节点;

exists:判断节点是否存在;

getData:获得一个节点的数据;

setData:设置一个节点的数据;

getChildren:获取节点下的所有子节点

这其中,exists,getData,getChildren属于读操作。Zookeeper客户端在请求读操作的时候,可以选择是否设置Watch。

Watch是什么意思呢?

我们可以理解成是注册在特定Znode上的触发器。当这个Znode发生改变,也就是调用了create,delete,setData方法的时候,将会触发Znode上注册的对应事件,请求Watch的客户端会接收到异步通知

具体交互过程如下:

1.客户端调用getData方法,watch参数是true。服务端接到请求,返回节点数据,并且在对应的哈希表里插入被Watch的Znode路径,以及Watcher列表。

2.当被Watch的Znode已删除,服务端会查找哈希表,找到该Znode对应的所有Watcher,异步通知客户端,并且删除哈希表中对应的Key-Value。

zookeeper实现分布式锁:    (转自:https://mp.weixin.qq.com/s/u8QDlrDj3Rl1YjY4TyKMCA)

zookeeper分布式锁应用了临时顺序节点,支持可重入

获取锁:首先在zookeeper中创建一个持久节点的ParentLock,当第一个客户端想要获得锁时,需要在ParentLock这个节点下创建一个临时顺序节点Lock1

之后,Client1查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock1是不是顺序最靠前的一个。如果是第一个节点,则成功获得锁。

这时候,如果再有一个客户端 Client2 前来获取锁,则在ParentLock下载再创建一个临时顺序节点Lock2。

Client2查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock2是不是顺序最靠前的一个,结果发现节点Lock2并不是最小的。

于是,Client2向排序仅比它靠前的节点Lock1注册Watcher,用于监听Lock1节点是否存在。这意味着Client2抢锁失败,进入了等待状态。

这时候,如果又有一个客户端Client3前来获取锁,则在ParentLock下载再创建一个临时顺序节点Lock3。

Client3查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock3是不是顺序最靠前的一个,结果同样发现节点Lock3并不是最小的。

于是,Client3向排序仅比它靠前的节点Lock2注册Watcher,用于监听Lock2节点是否存在。这意味着Client3同样抢锁失败,进入了等待状态。

这样一来,Client1得到了锁,Client2监听了Lock1,Client3监听了Lock2。这恰恰形成了一个等待队列,很像是Java当中ReentrantLock所依赖的AQS(AbstractQueuedSynchronizer)。

释放锁:

1.任务完成,客户端显示释放:当任务完成时,Client1会显示调用删除节点Lock1的指令。

2.任务执行过程中,客户端崩溃:获得锁的Client1在任务执行过程中,如果Duang的一声崩溃,则会断开与Zookeeper服务端的链接。根据临时节点的特性,相关联的节点Lock1会随之自动删除。由于Client2一直监听着Lock1的存在状态,当Lock1节点被删除,Client2会立刻收到通知。这时候Client2会再次查询ParentLock下面的所有节点,确认自己创建的节点Lock2是不是目前最小的节点。如果是最小,则Client2顺理成章获得了锁。

个人学习分布式专题(二)分布式服务治理之分布式协调技术Zookeeper的更多相关文章

  1. 分布式服务协调技术zookeeper笔记

    本文主要学习ZooKeeper的体系结构.节点类型.节点监听.常用命令等基础知识,最后还学习了ZooKeeper的高可用集群的搭建与测试.希望能给想快速掌握ZooKeeper的同学有所帮助. ZooK ...

  2. SpringCloud开发学习总结(三)—— 服务治理Eureka

    在最初开始构建微服务系统的时候可能服务并不多,我们可以通过做一些静态配置来完成服务的调用.比如,有两个服务A和B,其中服务A需要调用服务B来完成一个业务操作时,为了实现服务B的高可用,不论采用服务端负 ...

  3. Dubbo框架应用之(二)--服务治理

    Dubbo服务治理全貌图 当我们现有ITOO平台系统的业务随着用户的逐渐增大,设计的业务越来越广,系统会异常的复杂,在大规模服务之前,我们可以采用的是RMI或Hessian等工具,暴露和引用远程服务, ...

  4. 分布式架构和微服务CI/CD的范本技术解读

    随笔分类 - 分布式架构--http://www.cnblogs.com/hujihon/category/858846.html (ZooKeeper.activemq.redis.kafka)的分 ...

  5. 【转】浅谈分布式服务协调技术 Zookeeper

    非常好介绍Zookeeper的文章, Google的三篇论文影响了很多很多人,也影响了很多很多系统.这三篇论文一直是分布式领域传阅的经典.根据MapReduce,于是我们有了Hadoop:根据GFS, ...

  6. 微服务浅谈&服务治理的演变过程

    这两天对互联网的架构演变进行了简单了解,并对微服务的出现很感兴趣,所以对相关知识进行了简单的整理与总结. 本篇文章先简单介绍了互联网架构的演变,进而介绍了服务化,最后介绍了微服务及最新的服务网格(Se ...

  7. 个人学习分布式专题(二)分布式服务治理之Dubbo框架

    目录 Dubbo框架 1.1 Dubbo是什么 1.2 Dubbo企业级应用示例(略) 1.3 Dubbo实现原理及架构剖析 1.4 Dubbo+Spring集成 Dubbo框架 1.1 Dubbo是 ...

  8. 美团分布式服务通信框架及服务治理系统OCTO

     一.什么是OCTO 定义: OCTO是美团的分布式服务通信框架及服务治理系统,属于公司级基础设施,目前尚未开源. 目标: 为公司所有业务提供统一的服务通信框架,使业务具备良好的服务运营能力,轻松实现 ...

  9. 分布式服务治理框架Dubbo的前世今生及应用实战

    Dubbo的出现背景 Dubbo从开源到现在,已经出现了接近10年时间,在国内各大企业被广泛应用. 它到底有什么魔力值得大家去追捧呢?本篇文章给大家做一个详细的说明. 大规模服务化对于服务治理的要求 ...

随机推荐

  1. 【转载】C#编程中两个List集合使用Intersect方法求交集

    在C#语言程序设计中,List集合是常用的集合数据类型,在涉及集合类型的运算中,有时候我们需要计算2个List集合中共有的数据,即对2个List集合求交集运算.此时可以使用C#语言提供的Interse ...

  2. 关于文本设置overflow:hidden后引起的垂直对齐问题

    目前有这样的需求,一行标题中,前面为图标,后面是文字,文字要实现一行省略的效果 首先把文字设为:display: inline-block; 然后设置省略: overflow: hidden; wor ...

  3. echarts3关系图:力引导布局, 固定某些节点

    在数组里设置 fixed: true,<a href='http://echarts.baidu.com/option.html#series-graph.data.fixed'>官方文档 ...

  4. 简单理解undefine和null的区别

    直接进入主题: 相同点:都表示“值的空缺” 不同点: null: 定义:一个空对象指针. 使用typeOf得到Object,相当于是一个特殊值 undefine: 定义:声明变量却未对其加以初始化的变 ...

  5. Python实现YOLO目标检测

    作者:R语言和Python学堂 链接:https://www.jianshu.com/p/35cfc959b37c 1. 什么是目标检测? YOLO目标检测的一个示例 啥是目标检测? 拿上图 (用YO ...

  6. Linux/Aix日常报错整理

    [root@localhost ~]# umount /mnt umount.nfs: /mnt: device is busy umount.nfs: /mnt: device is busy 问题 ...

  7. 如何在CentOS上搭建gitlab服务器

    步骤 1. 打开HTTP和SSH访问 1.1 安装 sudo yum install -y curl policycoreutils-python openssh-server 1.2 开启SSH 这 ...

  8. python中is与==的区别,编码和解码

    在介绍is与==的区别前,我们先来了解一些新的知识:内存地址.小数据池. 1.内存地址(is 比较的就是内存地址) 获取内存地址的方法:id() a = "str" 2.小数据池 ...

  9. 从groupby 理解mapper-reducer

    注,reduce之前已经shuff. mapper.py #!/usr/bin/env python """mapper.py""" imp ...

  10. MyBatis的关联查询

    关联映射的一对多 //查询经理角色 以及 该角色下对应的员工集合 public SmbmsRole getRoleAndUser(Integer id); <resultMap id=" ...