spark错误记录总结
1、执行spark-submit时出错
执行任务如下:
# ./spark-submit --class org.apache.spark.examples.SparkPi /hadoop/spark/examples/jars/spark-examples_2.11-2.4.0.jar 100
报错如下:
2019-02-22 09:56:26 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/1 is now RUNNING
2019-02-22 09:56:26 INFO BlockManagerMaster:54 - Registering BlockManager BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO BlockManagerMasterEndpoint:54 - Registering block manager kvm-test:36768 with 366.3 MB RAM, BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO BlockManagerMaster:54 - Registered BlockManager BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO BlockManager:54 - Initialized BlockManager: BlockManagerId(driver, kvm-test, 36768, None)
2019-02-22 09:56:26 INFO ContextHandler:781 - Started o.s.j.s.ServletContextHandler@5aae8eb5{/metrics/json,null,AVAILABLE,@Spark}
2019-02-22 09:56:27 INFO EventLoggingListener:54 - Logging events to hdfs://hadoop-cluster/spark/eventLog/app-20190222015626-0020.snappy
2019-02-22 09:56:27 INFO StandaloneSchedulerBackend:54 - SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
2019-02-22 09:56:28 INFO SparkContext:54 - Starting job: reduce at SparkPi.scala:38
2019-02-22 09:56:28 INFO DAGScheduler:54 - Got job 0 (reduce at SparkPi.scala:38) with 100 output partitions
2019-02-22 09:56:28 INFO DAGScheduler:54 - Final stage: ResultStage 0 (reduce at SparkPi.scala:38)
2019-02-22 09:56:28 INFO DAGScheduler:54 - Parents of final stage: List()
2019-02-22 09:56:28 INFO DAGScheduler:54 - Missing parents: List()
2019-02-22 09:56:28 INFO DAGScheduler:54 - Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34), which has no missing parents
2019-02-22 09:56:28 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/1 is now EXITED (Command exited with code 1)
2019-02-22 09:56:28 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/1 removed: Command exited with code 1
2019-02-22 09:56:28 INFO StandaloneAppClient$ClientEndpoint:54 - Executor added: app-20190222015626-0020/2 on worker-20190111083714-172.20.1.1-45882 (172.20.1.1:45882) with 1 core(s)
2019-02-22 09:56:28 INFO StandaloneSchedulerBackend:54 - Granted executor ID app-20190222015626-0020/2 on hostPort 172.20.1.1:45882 with 1 core(s), 512.0 MB RAM
2019-02-22 09:56:28 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/2 is now RUNNING
2019-02-22 09:56:28 INFO BlockManagerMaster:54 - Removal of executor 1 requested
2019-02-22 09:56:28 INFO CoarseGrainedSchedulerBackend$DriverEndpoint:54 - Asked to remove non-existent executor 1
2019-02-22 09:56:28 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 1 from BlockManagerMaster.
2019-02-22 09:56:28 INFO MemoryStore:54 - Block broadcast_0 stored as values in memory (estimated size 1936.0 B, free 366.3 MB)
2019-02-22 09:56:28 INFO MemoryStore:54 - Block broadcast_0_piece0 stored as bytes in memory (estimated size 1236.0 B, free 366.3 MB)
2019-02-22 09:56:28 INFO BlockManagerInfo:54 - Added broadcast_0_piece0 in memory on kvm-test:36768 (size: 1236.0 B, free: 366.3 MB)
2019-02-22 09:56:28 INFO SparkContext:54 - Created broadcast 0 from broadcast at DAGScheduler.scala:1161
2019-02-22 09:56:28 INFO DAGScheduler:54 - Submitting 100 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))
2019-02-22 09:56:28 INFO TaskSchedulerImpl:54 - Adding task set 0.0 with 100 tasks
2019-02-22 09:56:29 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/2 is now EXITED (Command exited with code 1)
2019-02-22 09:56:29 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/2 removed: Command exited with code 1
2019-02-22 09:56:29 INFO StandaloneAppClient$ClientEndpoint:54 - Executor added: app-20190222015626-0020/3 on worker-20190111083714-172.20.1.1-45882 (172.20.1.1:45882) with 1 core(s)
2019-02-22 09:56:29 INFO BlockManagerMaster:54 - Removal of executor 2 requested
2019-02-22 09:56:29 INFO CoarseGrainedSchedulerBackend$DriverEndpoint:54 - Asked to remove non-existent executor 2
2019-02-22 09:56:29 INFO StandaloneSchedulerBackend:54 - Granted executor ID app-20190222015626-0020/3 on hostPort 172.20.1.1:45882 with 1 core(s), 512.0 MB RAM
2019-02-22 09:56:29 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 2 from BlockManagerMaster.
2019-02-22 09:56:29 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/3 is now RUNNING
2019-02-22 09:56:31 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/3 is now EXITED (Command exited with code 1)
2019-02-22 09:56:31 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/3 removed: Command exited with code 1
2019-02-22 09:56:31 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 3 from BlockManagerMaster.
2019-02-22 09:56:31 INFO BlockManagerMaster:54 - Removal of executor 3 requested
2019-02-22 09:56:31 INFO CoarseGrainedSchedulerBackend$DriverEndpoint:54 - Asked to remove non-existent executor 3
2019-02-22 09:56:31 INFO StandaloneAppClient$ClientEndpoint:54 - Executor added: app-20190222015626-0020/4 on worker-20190111083714-172.20.1.1-45882 (172.20.1.1:45882) with 1 core(s)
2019-02-22 09:56:31 INFO StandaloneSchedulerBackend:54 - Granted executor ID app-20190222015626-0020/4 on hostPort 172.20.1.1:45882 with 1 core(s), 512.0 MB RAM
2019-02-22 09:56:31 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/4 is now RUNNING
2019-02-22 09:56:33 INFO StandaloneAppClient$ClientEndpoint:54 - Executor updated: app-20190222015626-0020/4 is now EXITED (Command exited with code 1)
2019-02-22 09:56:33 INFO StandaloneSchedulerBackend:54 - Executor app-20190222015626-0020/4 removed: Command exited with code 1
2019-02-22 09:56:33 INFO BlockManagerMasterEndpoint:54 - Trying to remove executor 4 from BlockManagerMaster.
2019-02-22 09:56:33 INFO BlockManagerMaster:54 - Removal of executor 4 requested
从报错看出来,,任务一直在请求,但是executor莫名退出了,日志后面还有一个警告,如下:
2019-02-22 09:42:58 WARN TaskSchedulerImpl:66 - Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
分析:从这个信息可以看出来,,task没有获取到资源
解决:
第一种情况:资源不足(可能是CPU,也可能是内存),这种情况可以调整内存(driver或者executor)或者CPU大小
例如,按如下调整,很多情况都是executor内存设置的过大,超出了实际的内存大小
# ./spark-submit --class org.apache.spark.examples.SparkPi --executor-memory 512M --total-executor-cores 2 --driver-memory 512M /hadoop/spark/examples/jars/spark-examples_2.11-2.4.0.jar 100
第二种情况:也是我遇到的。我有一个spark集群+一个spark客户端,我在spark集群里面执行任务可以正常执行,但是放到spark客户端执行的时候就报错了。机器内存,cpu都足够大。导致错误的原因竟然是主机名和ip对应出错了,
由于spark集群是以前搭建的,今天做了一个spark,忘记在spark集群里面添加spark客户端的主机和ip映射了。添加上好了。
总结:
出现这类问题一般有几个可能的原因,逐一检查排除即可:
(1).因为提交任务的节点不能和worker节点交互,因为提交完任务后提交任务节点上会起一个进程,展示任务进度,大多端口为4044,工作节点需要反馈进度给该该端口,所以如果主机名或者IP在hosts中配置不正确。所以检查下主机名和ip是否配置正确。
(2).也有可能是内存不足造成的。内存设置可以根据情况调整下。另外,也检查下web UI看看,确保worker节点处于alive状态。
2、错误日志如下
19/04/08 23:47:19 ERROR ContextCleaner: Error cleaning broadcast 11700946
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by spark.rpc.askTimeout
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:47)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:62)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:58)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:92)
at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:76)
at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:148)
at org.apache.spark.broadcast.TorrentBroadcast$.unpersist(TorrentBroadcast.scala:321)
at org.apache.spark.broadcast.TorrentBroadcastFactory.unbroadcast(TorrentBroadcastFactory.scala:45)
at org.apache.spark.broadcast.BroadcastManager.unbroadcast(BroadcastManager.scala:66)
at org.apache.spark.ContextCleaner.doCleanupBroadcast(ContextCleaner.scala:238)
at org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1$$anonfun$apply$mcV$sp$1.apply(ContextCleaner.scala:194)
at org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1$$anonfun$apply$mcV$sp$1.apply(ContextCleaner.scala:185)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.ContextCleaner$$anonfun$org$apache$spark$ContextCleaner$$keepCleaning$1.apply$mcV$sp(ContextCleaner.scala:185)
at org.apache.spark.util.Utils$.tryOrStopSparkContext(Utils.scala:1302)
at org.apache.spark.ContextCleaner.org$apache$spark$ContextCleaner$$keepCleaning(ContextCleaner.scala:178)
at org.apache.spark.ContextCleaner$$anon$1.run(ContextCleaner.scala:73)
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [120 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:223)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:227)
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:220)
同时,日志里面还报了java.lang.OutOfMemoryError: Java heap space
分析:从上面日志分析,是由于spark内存不够,导致gc,gc会使得executor与driver通信中断。
解决:(1)、增加硬件资源 ,修改executor内存;
(2)、增大作业并发度;
(3)、修改spark-defaults.conf ,加大executor通信超时时间spark.executor.heartbeatInterval
spark错误记录总结的更多相关文章
- uploadify插件Http Error(302)错误记录(MVC)
由于项目(asp.net MVC)需要做一个附件上传的功能,使用的是jQuery的Uploadify插件的2.1.0版本,上传文件到自己项目指定的文件夹下面.做完之后,在谷歌上测试是正确的,在火狐上报 ...
- 开发错误记录8:Unable to instantiate application com
开发错误记录8:Unable to instantiate application com.android.tools.fd.runtime.BootstrapApplication 这是因为在And ...
- PHP 错误与异常 笔记与总结(5)配置文件中与错误日志相关的选项 && 将错误记录到指定的文件中
[记录错误(生产环境)] php.ini: ① 开启 / 关闭 错误日志功能 log_errors = On ② 设置 log_errors 的最大字节数 log_errors_max_len = 其 ...
- 安装nagios出现的两个错误记录
最近在安装nagios,出现几个错误记录: 一 检查nagios配置的时候出现错误如下: Warning: Duplicate definition found for host 'kelly' (c ...
- [置顶] 利用Global.asax的Application_Error实现错误记录,错误日志
利用Global.asax的Application_Error实现错误记录 错误日志 void Application_Error(object sender, EventArgs e) { // 在 ...
- streamsets 错误记录处理
我们可以在stage 级别,或者piepline 级别进行error 处理配置 pipeline的错误记录处理 discard(丢踢) send response to Origin pipeline ...
- php设置错误,错误记录
//设置错误级别. error_reporting(E_ALL); //显示所有错误 error_reporting(E_ALL&~E_NOTICE); //显示所有错误但不显示提示级别的 ...
- 27:简单错误记录SimpleErrorLog
题目描述 开发一个简单错误记录功能小模块,能够记录出错的代码所在的文件名称和行号. 处理: 1. 记录最多8条错误记录,循环记录,对相同的错误记录(净文件名称和行号完全匹配)只记录一条,错误计数增加: ...
- WebSphere中数据源连接池太小导致的连接超时错误记录
WebSphere中数据源连接池太小导致的连接超时错误记录. 应用连接超时错误信息: [// ::: CST] webapp E com.ibm.ws.webcontainer.webapp.WebA ...
随机推荐
- C# DataGridView 动态添加列和行
https://blog.csdn.net/alisa525/article/details/7350471 dataGridView1.ReadOnly = true ; //禁用编辑功能 ...
- wget的url获取方式
获取方式 每次用wget都是在网上查相应的url,但以前没怎么关注过这个url是怎么获取到的,这里总结一下 这里以下载jekins为例: 打开jekins网站:https://jenkins.io/d ...
- Dijkstra算法正确性证明
问题:求图中点1到其他各点的最短距离 策略: 1.把起点1放入初始集合Set中,从剩余的点中,选取到Set(此时Set中只有1个点)距离最近的点,并入集合Set中, 2.从剩余的点中,找经过集合Set ...
- Springboot2.x整合Redis以及连接哨兵模式/集群模式
依赖: <!--spirngboot版本为2.x--><!-- 加载spring boot redis包,springboot2.0中直接使用jedis或者lettuce配置连接池, ...
- ubuntu18.04安装wine
wine是一个兼容层,可以从多平台(linux,macos,等)运行windows应用. Wine (Wine Is Not an Emulator)[即Wine不是一个模拟器]是一个在Linux和U ...
- JAVA 多线程(一)
进程和线程 进程:是一个正在执行中的程序.每一个进程执行都有一个执行顺序,该执行顺序是一个执行路径,或者叫一个控制单元. 线程:就是进程中的一个独立的控制单元. 线程在控制着进程的执行. 在计算机中多 ...
- JAVA 判断给定目录的大小
题目:给定一个目录,判断该目录的大小,单位为G 思路: 递归拿到目录的子文件,然后取长度,累加 public class FileDemo02 { public static void main(St ...
- JS函数篇【2】
什么是函数 函数的作用,可以写一次代码,然后反复地重用这个代码. <h3 onload="add2(1,2,3);add3(4,5,6)"></h3> &l ...
- PAT基础级-钻石段位样卷2-7-4 6翻了 (15 分)
“666”是一种网络用语,大概是表示某人很厉害.我们很佩服的意思.最近又衍生出另一个数字“9”,意思是“6翻了”,实在太厉害的意思.如果你以为这就是厉害的最高境界,那就错啦 —— 目前的最高境界是数字 ...
- java 从上至下打印二叉树
从上往下打印二叉树题目描述: 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 输入: 输入可能包含多个测试样例. 对于每个测试案例,输入的第一行一个整数n(1<=n<=1000, ...