DBSCAN算法及sklearn实现
基本概念:(Density-Based Spatial Clustering of Application with Noiso)
1.核心对象:
若某个点的密度达到算法设定的阈值则其为核心点。(即r领域内的点数量不小于minPts)
2.ε-领域的距离阈值:
设定的半径r
3.直接密度可达:
若某点p在点q的r领域内,且q是核心点则p-q直接密度可达
4.密度可达:
若有一个点的序列q0、q1、 ...qk,对任意qi-qi-q是直接密度可达的,则称从q0到qk密度可达,这实际上是直接密度可达的"传播"。
5.密度相连:
若从某核心点p出发,点q和点k都是密度可达的,则称点q和点k是密度相连的
6.边界点:
属于某一类的非核心点,不能发展下线了
7.直接密度可达:
若某点p在点q的r领域内,且q是核心点则p-q直接密度可达
8.噪声点:
不属于任何一个类簇的点,从任何一个核心点出发都是密度不可达的
9.可视化展示:
A:核心对象
B,C:边界点
N:离群点
工作流程:
参数D:
输入数据集
参数ε:
指定半径
MinPts:
密度阈值
半径ε,可以根据K距离来设定:找突变点
K距离:
给定数据集P={p(i);i=0,1...n},计算点P(i)到集合D的子集S中所有点之间的距离,距离按照从小到大的顺序排序,d(k)就被称为k-距离。
MinPts:
k-距离中的k值,一般取得小一些,多次尝试,这儿有个聚类可视化好玩的网址点击这里,可以感受下,挺好玩的。
优势:
不需要指定簇个数
可以发现任意形状的簇
擅长找到离群点(检测任务)
劣势:
高维数据有些困难(可以做降维)
参数难以选择(参数对结果影响非常大)
Sklearn中效率很慢(数据消减策略)
kmeans-dbcan聚类对比
# beer dataset
import pandas as pd
beer = pd.read_csv('data.txt', sep=' ')
beer
X = beer[["calories","sodium","alcohol","cost"]]
# K-means clustering
from sklearn.cluster import KMeans
km = KMeans(n_clusters=3).fit(X)
km2 = KMeans(n_clusters=2).fit(X)
km.labels_
array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 2, 1])
beer['cluster'] = km.labels_
beer['cluster2'] = km2.labels_
beer.sort_values('cluster')
from pandas.tools.plotting import scatter_matrix
%matplotlib inline
cluster_centers = km.cluster_centers_
cluster_centers_2 = km2.cluster_centers_
beer.groupby("cluster").mean()
beer.groupby("cluster2").mean()
centers = beer.groupby("cluster").mean().reset_index()
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 14
import numpy as np
colors = np.array(['red', 'green', 'blue', 'yellow'])
plt.scatter(beer["calories"], beer["alcohol"],c=colors[beer["cluster"]])
plt.scatter(centers.calories, centers.alcohol, linewidths=3, marker='+', s=300, c='black')
plt.xlabel("Calories")
plt.ylabel("Alcohol")
scatter_matrix(beer[["calories","sodium","alcohol","cost"]],s=100, alpha=1, c=colors[beer["cluster"]], figsize=(10,10))
plt.suptitle("With 3 centroids initialized")
scatter_matrix(beer[["calories","sodium","alcohol","cost"]],s=100, alpha=1, c=colors[beer["cluster2"]], figsize=(10,10))
plt.suptitle("With 2 centroids initialized")
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_scaled
array([[ 0.38791334, 0.00779468, 0.43380786, -0.45682969],
[ 0.6250656 , 0.63136906, 0.62241997, -0.45682969],
[ 0.82833896, 0.00779468, -3.14982226, -0.10269815],
[ 1.26876459, -1.23935408, 0.90533814, 1.66795955],
[ 0.65894449, -0.6157797 , 0.71672602, 1.95126478],
[ 0.42179223, 1.25494344, 0.3395018 , -1.5192243 ],
[ 1.43815906, 1.41083704, 1.1882563 , -0.66930861],
[ 0.55730781, 1.87851782, 0.43380786, -0.52765599],
[-1.1366369 , -0.7716733 , 0.05658363, -0.45682969],
[-0.66233238, -1.08346049, -0.5092527 , -0.66930861],
[ 0.25239776, 0.47547547, 0.3395018 , -0.38600338],
[-1.03500022, 0.00779468, -0.13202848, -0.24435076],
[ 0.08300329, -0.6157797 , -0.03772242, 0.03895447],
[ 0.59118671, 0.63136906, 0.43380786, 1.88043848],
[ 0.55730781, -1.39524768, 0.71672602, 2.0929174 ],
[-2.18688263, 0.00779468, -1.82953748, -0.81096123],
[ 0.21851887, 0.63136906, 0.15088969, -0.45682969],
[ 0.38791334, 1.41083704, 0.62241997, -0.45682969],
[-2.05136705, -1.39524768, -1.26370115, -0.24435076],
[-1.20439469, -1.23935408, -0.03772242, -0.17352445]])
km = KMeans(n_clusters=3).fit(X_scaled)
beer["scaled_cluster"] = km.labels_
beer.sort_values("scaled_cluster")
beer.groupby("scaled_cluster").mean()
pd.scatter_matrix(X, c=colors[beer.scaled_cluster], alpha=1, figsize=(10,10), s=100)
from sklearn import metrics
score_scaled = metrics.silhouette_score(X,beer.scaled_cluster)
score = metrics.silhouette_score(X,beer.cluster)
print(score_scaled, score)
scores = []
for k in range(2,20):
labels = KMeans(n_clusters=k).fit(X).labels_
score = metrics.silhouette_score(X, labels)
scores.append(score) scores
[0.69176560340794857,
0.67317750464557957,
0.58570407211277953,
0.42254873351720201,
0.4559182167013377,
0.43776116697963124,
0.38946337473125997,
0.39746405172426014,
0.33061511213823314,
0.34131096180393328,
0.34597752371272478,
0.31221439248428434,
0.30707782144770296,
0.31834561839139497,
0.28495140011748982,
0.23498077333071996,
0.15880910174962809,
0.084230513801511767]
plt.plot(list(range(2,20)), scores)
plt.xlabel("Number of Clusters Initialized")
plt.ylabel("Sihouette Score")
# DBSCAN clustering
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=10, min_samples=2).fit(X)
labels = db.labels_
beer['cluster_db'] = labels
beer.sort_values('cluster_db')
beer.groupby('cluster_db').mean()
DBSCAN算法及sklearn实现的更多相关文章
- 挑子学习笔记:DBSCAN算法的python实现
转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clu ...
- 机器学习--聚类系列--DBSCAN算法
DBSCAN算法 基本概念:(Density-Based Spatial Clustering of Applications with Noise) 核心对象:若某个点的密度达到算法设定的阈值则其为 ...
- 机器学习 - 算法 - 聚类算法 K-MEANS / DBSCAN算法
聚类算法 概述 无监督问题 手中无标签 聚类 将相似的东西分到一组 难点 如何 评估, 如何 调参 基本概念 要得到的簇的个数 - 需要指定 K 值 质心 - 均值, 即向量各维度取平均 距离的度量 ...
- Python机器学习笔记:K-Means算法,DBSCAN算法
K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...
- 【转】常用聚类算法(一) DBSCAN算法
原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...
- 常用聚类算法(一) DBSCAN算法
1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...
- 基于密度的聚类之Dbscan算法
一.算法概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次 ...
- DBSCAN算法
简单的说就是根据一个根据对象的密度不断扩展的过程的算法.一个对象O的密度可以用靠近O的对象数来判断.学习DBSCAN算法,需要弄清楚几个概念: 一:基本概念 1.:对象O的是与O为中心,为半径的空间, ...
- 数据挖掘算法:DBSCAN算法的C++实现
(期末考试快到了,所以比较粗糙,请各位读者理解..) 一. 概念 DBSCAN是一种产生划分聚类的基于密度的聚类算法,簇的个数由算法自动地确定.低密度区域中的点被视为噪声而忽略,因此DBSCAN ...
随机推荐
- android#嵌入式布局并创建自定义控件
一.如何在android中嵌入布局文件: 新建一个布局title.xml,该文件为公共文件 <LinearLayout xmlns:android="http://schemas.an ...
- 记一次django学习1.0和2.0区别
依据学习课程的教学,在项目实战学习过程中教学使用django1.0,获取ManytoMany关联字段,源码使用的是 即django使用 models.Customer.tags.rel.to.obje ...
- 使用nginx部署项目的相关资料
1.简单的利用nginx部署前端项目 2.ubuntu 下 Nginx 的安装和配置 3.nginx配置文件nginx.conf超详细讲解 4.Nginx 安装与部署配置以及Nginx和uWSGI开机 ...
- BTree B+Tree
简介 B 树是为了磁盘或其它存储设备而设计的一种多叉平衡查找树.(相对于二叉,B树每个内结点有多个分支,即多叉)B树又可以写成B-树/B-Tree,并不是B“减”树,横杠为连接符,容易被误导首先我们介 ...
- [bzoj3162]独钓寒江雪_树hash_树形dp
独钓寒江雪 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3162 题解: 首先,如果没有那个本质相同的限制这就是个傻逼题. 直接树形dp ...
- 【Python】【demo实验7】【练习实例】【完全平方数相关】
题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少? 程序分析:可填在百位.十位.个位的数字都是1.2.3.4.组成所有的排列后再去 掉不满足条件的排列. ...
- H2内嵌数据库的使用
H2内嵌数据库的使用 H2是一个开源的嵌入式数据库引擎,采用java语言编写,不受平台的限制. 同时H2提供了一个十分方便的web控制台用于操作和管理数据库内容. H2还提供兼容模式,可以兼容一些主流 ...
- PAT B1020 月饼(25)
题目描述 月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼.现给定所有种类月饼的库存量.总售价.以及市场的最大需求量,请你计算可以获得的最大收益是多少. 注意:销售时允许取出一部 ...
- matplotlib库绘制散点图
假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温随时间(天)变化的某种规律? a = [11,17,16,11,12,11,12,6,6 ...
- 学习 Laravel - Web 开发实战入门笔记(1)
本笔记根据 LearnKu 教程边学边记而成.该教程以搭建出一个类似微博的Web 应用为最终成果,在过程中学习 Laravel 的相关知识. 准备开发环境 原教程使用官方推荐的 Homestead 开 ...