TensorFlow指定GPU/CPU进行训练和输出devices信息

1.在tensorflow代码中指定GPU/CPU进行训练

with tf.device('/gpu:0'):
....
with tf.device('/gpu:1'):
...
with tf.device('/cpu:0'):
...

2.输出devices的信息

在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息

进入Python环境

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

输出以下信息:

2019-05-23 20:12:47.415412: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-05-23 20:12:47.509275: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-05-23 20:12:47.509632: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x14b6e60 executing computations on platform CUDA. Devices:
2019-05-23 20:12:47.509660: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce MX150, Compute Capability 6.1
2019-05-23 20:12:47.529891: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1992000000 Hz
2019-05-23 20:12:47.530293: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x1b7b140 executing computations on platform Host. Devices:
2019-05-23 20:12:47.530318: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>
2019-05-23 20:12:47.530451: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce MX150 major: 6 minor: 1 memoryClockRate(GHz): 1.341
pciBusID: 0000:01:00.0
totalMemory: 1.96GiB freeMemory: 1.92GiB
2019-05-23 20:12:47.530468: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-05-23 20:12:47.531469: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-05-23 20:12:47.531487: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-05-23 20:12:47.531494: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-05-23 20:12:47.531563: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/device:GPU:0 with 1738 MB memory) -> physical GPU (device: 0, name: GeForce MX150, pci bus id: 0000:01:00.0, compute capability: 6.1)
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 1736381910647465363
, name: "/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 10300285037066135290
physical_device_desc: "device: XLA_GPU device"
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 6680013036417599682
physical_device_desc: "device: XLA_CPU device"
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 1823080448
locality {
bus_id: 1
links {
}
}
incarnation: 7894169161128462449
physical_device_desc: "device: 0, name: GeForce MX150, pci bus id: 0000:01:00.0, compute capability: 6.1"
]

找到对应devices的name,复制双引号下的名字,替换第1的代码中的单引号的内容,就可以指定对应的设备进行训练了。

TensorFlow指定GPU/CPU进行训练和输出devices信息的更多相关文章

  1. TensorFlow指定GPU使用及监控GPU占用情况

    查看机器上GPU情况 命令: nvidia-smi 功能:显示机器上gpu的情况 命令: nvidia-smi -l 功能:定时更新显示机器上gpu的情况 命令:watch -n 3 nvidia-s ...

  2. Keras/Tensorflow选择GPU/CPU运行

    首先,导入os,再按照PCI_BUS_ID顺序,从0开始排列GPU, import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_B ...

  3. 指定Gpu range系列函数

    tensorflow指定GPU训练 import os os.environ[CUDA_VISIABLE_DEVICES] = '0,1'记住DEVICES是复数 range()返回的是range o ...

  4. [转] pytorch指定GPU

    查过好几次这个命令,总是忘,转一篇mark一下吧 转自:http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如 ...

  5. TensorFlow指定CPU和GPU方法

    TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow ...

  6. TensorFlow——tensorflow指定CPU与GPU运算

    1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测.如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作. 如果机器上有超过一个可用 ...

  7. 安装 tensorflow 1.1.0;以及安装其他相似版本tensorflow遇到的问题;tensorflow 1.13.2 cuda-10环境变量配置问题;Tensorflow 指定训练时如何指定使用的GPU;

    # 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量expo ...

  8. Tensorflow检验GPU是否安装成功 及 使用GPU训练注意事项

    1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. imp ...

  9. tensorflow 指定使用gpu处理,tensorflow占用多个GPU但只有一个在跑

    我们在刚使用tensorflow的过程中,会遇到这个问题,通常我们有多个gpu,但是 在通过nvidia-smi查看的时候,一般多个gpu的资源都被占满,但是只有一个gpu的GPU-Util 和 21 ...

随机推荐

  1. idea快捷键整合-无鼠标操作idea

    查找所有快捷键 Ctrl + Shift + A.输入action或操作的名字. 全屏模式 使用Alt+V快捷键,弹出View视图,然后选择Enter Full Screen. 进入这个模式后,我想看 ...

  2. Spring 控制器重定向

    1.示例 return "redirect:/allUser"; redirect是跳转的意思后面是跳转的页面

  3. JS之ajax实现注册页,小文件传输

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Spring mybatis源码篇章-动态SQL基础语法以及原理

    通过阅读源码对实现机制进行了解有利于陶冶情操,承接前文Spring mybatis源码篇章-Mybatis的XML文件加载 前话 前文通过Spring中配置mapperLocations属性来进行对m ...

  5. vue中的axios.post使用json数据传输,出现请求头字段内容类型是不被允许的情况的解决方案

    如何解决出现AXIOS的Request header field Content-Type is not allowed by Access-Control-Allow-Headers in pref ...

  6. 2.3负载均衡:Ribbon

    基于上一篇文章的工程,启动eureka-server 工程:启动service-hi工程,它的端口为8765:将service-hi的配置文件的端口改为8763,并启动,这时你会发现:service- ...

  7. 爬虫-selenium 模块-02

    目录 selenium 模块 chromedriver 浏览器驱动下载与存放 PhantomJS 无界面浏览器 标签元素查找方法 xpath 格式用法 获取标签属性 等待元素被加载 元素交互操作 点击 ...

  8. 【背包问题】PACKING

    题目描述 It was bound to happen.  Modernisation has reached the North Pole.  Faced with escalating costs ...

  9. F12的用法

    F12在Web测试中十分重要,可以定位元素(UI自动化常用),查看网页响应时间/数据(定位BUG,测单页面响应时间→性能) Elements 点击这个按钮,将光标移至“Google”图片位置并点击,右 ...

  10. .Net C# 读取xml

    [TestMethod] public void Test3() { StringBuilder temp = new StringBuilder(); temp.AppendFormat(" ...