/*
HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4
题意:
定义一张二分图,U中每个节点和V中两个节点连边
完美匹配的权值为该匹配所有边的权值相乘
求所有完美匹配的权值之和
分析:
可以发现有些V中的点只能连唯一的U中的点
按拓扑排序思路将这些全部处理掉后,剩下的点构成一个个环
每个环有两种连线方式,间隔取边权
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 600005;
const LL MOD = 998244353;
struct Edge {
int v; LL w;
};
vector<Edge> G[N];
int vis[N];
int cnt[N];
int t, n;
LL ans;
queue<int> que;
LL s[2];
void dfs(int x, int pre, int p)
{
if (vis[x]) return;
vis[x] = 2;
for (const auto & e : G[x])
{
if (vis[e.v] == 1 || e.v == pre) continue;
s[p] = s[p] * e.w % MOD;
dfs(e.v, x, p^1);
break;
}
}
void solve()
{
for (int i = n+1; i <= 2*n; i++)
if (G[i].size() == 1) que.push(i);
ans = 1;
while (!que.empty())
{
int y = que.front(); que.pop();
vis[y] = 1;
for (const auto& e: G[y])
{
if (!vis[e.v])
{
vis[e.v] = 1;
ans = ans * e.w % MOD;
for (const auto & ee: G[e.v])
{
if (vis[ee.v]) continue;
cnt[ee.v]--;
if (cnt[ee.v] == 1) que.push(ee.v);
}
}
}
}
for (int i = 1; i <= n; i++)
{
if (!vis[i])
{
s[0] = s[1] = 1;
dfs(i, i, 0);
ans = ans * (s[0] + s[1]) % MOD;
}
}
}
void init(int n)
{
for (int i = 0; i <= n; i++) G[i].clear();
while (!que.empty()) que.pop();
memset(vis, 0, sizeof(vis));
memset(cnt, 0, sizeof(cnt));
}
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
init(n<<1);
for (int i = 1; i <= n; i++)
{
int v; LL w;
scanf("%d%lld", &v, &w); v += n;
G[i].push_back(Edge{v, w});
G[v].push_back(Edge{i, w});
cnt[v]++;
scanf("%d%lld", &v, &w); v += n;
G[i].push_back(Edge{v, w});
G[v].push_back(Edge{i, w});
cnt[v]++;
}
solve();
printf("%lld\n", ans);
}
}

  

HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4的更多相关文章

  1. HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  2. HDU 6073 Matching In Multiplication(拓扑排序)

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  3. HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑

    Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...

  4. 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)

    题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...

  5. HDU 6073 Matching In Multiplication(拓扑排序+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...

  6. HDU 6162 - Ch’s gift | 2017 ZJUT Multi-University Training 9

    /* HDU 6162 - Ch’s gift [ LCA,线段树 ] | 2017 ZJUT Multi-University Training 9 题意: N节点的树,Q组询问 每次询问s,t两节 ...

  7. HDU 4951 Multiplication table(2014 Multi-University Training Contest 8)

    思路   如果进制为p    那么当x<p时 (p-1)*(p-x)=(p-(x+1))  *p +x     因为x<p  所以没有进位  所以高位上的数字为    p-(x+1). 根 ...

  8. 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。

    /** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...

  9. 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟

    /** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...

随机推荐

  1. [转帖]POWER ISA开源 浪潮商用机器加速POWER技术生态建设步伐

    POWER ISA开源 浪潮商用机器加速POWER技术生态建设步伐 [原创]   2019-08-26 18:51:04 关键字: 开源 Power 浪潮商用机器 http://server.zhid ...

  2. 关于SpringMVC中的转发与重定向的说明

    写的非常详细,参看该地址:https://www.zifangsky.cn/661.html 总结: 1.请求转发:url地址不变,可带参数,如?username=forward 2.请求重定向:ur ...

  3. java--键盘输入任意数字进行求和

    思路,我将键盘输入的数放入数组,然后便利数组进行求和 package com.test.day01; import java.util.Scanner; public class Test { pub ...

  4. shiro小记

    今天主要看了Shiro的认证,授权功能初步了解了一下,其他的功能用的不多,之后再看. 先说一下Shiro的三个核心概念: 1.Subject: 代表当前正在执行操作的用户,但Subject代表的可以是 ...

  5. 2019上海网络赛 F. Rhyme scheme 普通dp

    Rhyme scheme Problem Describe A rhyme scheme is the pattern of rhymes at the end of each line of a p ...

  6. 第八章 ZYNQ-MIZ701 软硬调试高级技巧

      软件和硬件的完美结合才是SOC的优势和长处,那么开发ZYNQ就需要掌握软件和硬件开发的调试技巧,这样才能同时分析软件或者硬件的运行情况,找到问题,最终解决.那么本章将通过一个简单的例子带大家使用v ...

  7. 作业13:Map相关知识点(一)

    一 Map相关类图 二 Map接口 1 Map接口中的方法 jdk 方法名 简单描述 put(K,V):V 添加value,当Key对应无值,返回null;有值则返回上一个值.(覆盖式,可以反复覆盖前 ...

  8. spring——aop详细总结1

    AOP(Aspect-Oriented Programming, 面向切面编程): 是一种新的方法论, 是对传统 OOP(Object-Oriented Programming, 面向对象编程) 的补 ...

  9. 安装 node.js npm,cnpm

    参考:https://blog.csdn.net/suiyuehuimou/article/details/74143436 https://www.liaoxuefeng.com/wiki/0014 ...

  10. mybatis基础小结

    1.JDBC是怎么访问数据库的?答:JDBC编程有6步,分别是1.加载sql驱动,2.使用DriverManager获取数据库连接,3.使用Connecttion来创建一个Statement对象 St ...