Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列
时间限制: 1 s
空间限制: 256000 KB
题目等级 : 钻石 Diamond
题目描述 Description
广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入描述 Input Description
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出描述 Output Description
输出包含一行一个整数,即an除以m的余数。
样例输入 Sample Input
1 1 1 1 10 7
样例输出 Sample Output
6
数据范围及提示 Data Size & Hint
数列第10项是55,除以7的余数为6。
分类标签 Tags
矩阵乘法 数论
/*
矩阵乘法快速幂.
矩阵还是比较好推的.....
要时刻想清楚最后的答案记在哪儿.
然后W了好几次.
ans先赋值乘一次.n-1.
把答案放在后边的话A1到An显然乘了n-2次....
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
using namespace std;
LL p,q,a1,a2,n,m;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
void mi(int n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
a[1][1]=a1,a[1][2]=a2;
b[1][2]=ans[1][2]=q,b[2][1]=ans[2][1]=1,
b[2][2]=ans[2][2]=p;
mi(n);
printf("%lld",(a[1][1]*ans[1][2]%m+a[1][2]*ans[2][2]%m)%m);
}
int main()
{
scanf("%d%d%d%d",&p,&q,&a1,&a2);
cin>>n;cin>>m;
n-=3;
slove();
return 0;
}
/*
结果在前边.
多乘一次.
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
using namespace std;
LL p,q,a1,a2,n,m;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
void mi(int n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
/*for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+a[i][k]*ans[k][j]%m)%m;*/
}
void slove()
{
a[1][1]=a1,a[1][2]=a2;
b[1][2]=ans[1][2]=q,b[2][1]=ans[2][1]=1,
b[2][2]=ans[2][2]=p;
mi(n);
printf("%lld",(a[1][1]*ans[1][1]%m+a[1][2]*ans[2][1]%m)%m);
}
int main()
{
scanf("%d%d%d%d",&p,&q,&a1,&a2);
cin>>n;cin>>m;
n-=2;
slove();
return 0;
}
Codevs 1574 广义斐波那契数列(矩阵乘法)的更多相关文章
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造
一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...
- codevs1574广义斐波那契数列
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p* ...
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
随机推荐
- composer在windows下安装并且设置全局变量
Composer是 PHP 用来管理依赖(dependency)关系的工具.你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件. 1丶使用安 ...
- [Vue]子组件与父组件之间传值
1.父组件与子组件传值props 1.1定义父组件,父组件传递 inputText这个数值给子组件: //父组件 //引入的add-widget组件 //使用 v-bind 的缩写语法通常更简单: & ...
- DPDK latencystats库使用方案
初始化 注意务必调用 rte_metrics_init /* init latency stats */ /* @TODO should we remove this in product env? ...
- luogu4777[模板]拓展中国剩余定理题解
题目链接 https://www.luogu.org/problemnew/show/P4777 分析 扩展\(CRT\)就是解决模数不互质的情况,说是扩展\(CRT\),其实都是扩欧... 先来考虑 ...
- Python打
.智能识别图片物体.这步是智能垃圾分类的魔法核心.原理是人工智能会根据打上标签的海量图片来识别新的图片所归属的分类标签.好奇的读者可能会问,我没学过深度学习啊?我也不会训练模型,怎么办? python ...
- ASE19团队项目alpha阶段model组 scrum4 记录
本次会议于11月6日,19时整在微软北京西二号楼sky garden召开,持续50分钟. 与会人员:Jiyan He, Kun Yan, Lei Chai, Linfeng Qi, Xueqing W ...
- Delphi 10.3.3最新消息
有朋友说,已经开始内测,预计10月末发版,按最新的路线图,此版本支持iOS 13及Android 64位. 2019-11-18,今天,下载及注册机都来了,快下载安装,试用吧. 需要的话加入QQ群20 ...
- Sql 语法练习
select * from Student select * from Class select * from Score select * from Subject --1.查询出和张三住在同一个地 ...
- shell脚本编程进阶及RAID和LVM应用2
文件测试 存在性测试 -a FILE 这个选项的效果与-e 相同.但是它已经被弃用了,并且不鼓励使用 -e FILE 文件的存在性测试,存在则为真,否则为假 例:~]# [ -e /etc/rc.d/ ...
- PAT Basic 1057 数零壹 (20 分)
给定一串长度不超过 1 的字符串,本题要求你将其中所有英文字母的序号(字母 a-z 对应序号 1-26,不分大小写)相加,得到整数 N,然后再分析一下 N 的二进制表示中有多少 0.多少 1.例如给定 ...