1574 广义斐波那契数列

时间限制: 1 s

空间限制: 256000 KB

题目等级 : 钻石 Diamond

题目描述 Description

广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。

输入描述 Input Description

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

输出描述 Output Description

输出包含一行一个整数,即an除以m的余数。

样例输入 Sample Input

1 1 1 1 10 7

样例输出 Sample Output

6

数据范围及提示 Data Size & Hint

数列第10项是55,除以7的余数为6。

分类标签 Tags

矩阵乘法 数论

/*
矩阵乘法快速幂.
矩阵还是比较好推的.....
要时刻想清楚最后的答案记在哪儿.
然后W了好几次.
ans先赋值乘一次.n-1.
把答案放在后边的话A1到An显然乘了n-2次....
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
using namespace std;
LL p,q,a1,a2,n,m;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
void mi(int n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
a[1][1]=a1,a[1][2]=a2;
b[1][2]=ans[1][2]=q,b[2][1]=ans[2][1]=1,
b[2][2]=ans[2][2]=p;
mi(n);
printf("%lld",(a[1][1]*ans[1][2]%m+a[1][2]*ans[2][2]%m)%m);
}
int main()
{
scanf("%d%d%d%d",&p,&q,&a1,&a2);
cin>>n;cin>>m;
n-=3;
slove();
return 0;
}
/*
结果在前边.
多乘一次.
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
using namespace std;
LL p,q,a1,a2,n,m;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
void mi(int n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
/*for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+a[i][k]*ans[k][j]%m)%m;*/
}
void slove()
{
a[1][1]=a1,a[1][2]=a2;
b[1][2]=ans[1][2]=q,b[2][1]=ans[2][1]=1,
b[2][2]=ans[2][2]=p;
mi(n);
printf("%lld",(a[1][1]*ans[1][1]%m+a[1][2]*ans[2][1]%m)%m);
}
int main()
{
scanf("%d%d%d%d",&p,&q,&a1,&a2);
cin>>n;cin>>m;
n-=2;
slove();
return 0;
}

Codevs 1574 广义斐波那契数列(矩阵乘法)的更多相关文章

  1. 矩阵乘法快速幂 codevs 1574 广义斐波那契数列

    codevs 1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 广义的斐波那契数列是指形如 ...

  2. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  3. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  4. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  5. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  6. [codevs]1250斐波那契数列<矩阵乘法&快速幂>

    题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...

  7. 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造

    一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...

  8. codevs1574广义斐波那契数列

    1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond     题目描述 Description 广义的斐波那契数列是指形如an=p* ...

  9. 「Luogu 1349」广义斐波那契数列

    更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...

随机推荐

  1. window 杀固定端口的进程

    window 杀固定端口的进程   一. 查看所有进程占用的端口   在开始-运行-cmd,输入:netstat –ano可以查看所有进程       二.查看占用指定端口的程序   当你在用tomc ...

  2. golang数据基本数据类型和string类型的转换

    基本类型之间的转换 golang在不同类型的变量之间赋值时需要显式转换,也就是说golang中数据类型不能自动转换. 表达式T(v)将值v转换为类型T 1.数据类型的转换可以是从范围小——>范围 ...

  3. 用shell脚本安装MySQL-5.7.22-官方版本多实例

    Install_CentOS7_MySQL57_multi_instance.sh #!/bin/bash #请提前准备好参数文件my.cnf PORT=3307 InitMySQL() { mkdi ...

  4. springboot application.properties配置大全

    springboot application.properties配置大全 官方文档 https://docs.spring.io/spring-boot/docs/current/reference ...

  5. 检测对象类型的两种方式,constructor属性和instanceof

    //本例是为了记录检测对象类型的两种方式,即constructor属性和instanceof操作符.详见<高三>P145        function Person(name, age, ...

  6. Javascript的学习清单

    Javascript的学习清单 Javascript学习资源 程序员必读书籍 深入理解JavaScript系列 es6教程 jQuery中文文档 vue官网 zeptojs中文版 常用的插件与UI组件 ...

  7. 小程序 wxs时间戳转字符串

    function formatDate(value) { //不能使用 new Date() var time = getDate(value); var year = time.getFullYea ...

  8. AOP底层实现原理,动态代理如何动态

    代理 指定另外一个主体代替原来的某个主体去执行某个事物 代理执行的人 需要代理的人 需要代理的事情是一定要做的 但是被代理的人没有时间或自己做的不专业 静态代理: 父母朋友帮忙物色找对象 代理人掌握需 ...

  9. 【github】github的使用

    一.上传本地代码 1.在github上新建一个repository(命名为英文) 2.打开cmd,进入上传代码所在目录 3.输入如下命令 第一步:git init --建仓第二步:git add  * ...

  10. Dart中的匿名方法与自执行方法

    void main() { // 匿名方法 var printSomethings = () { print("somethings"); }; printSomethings() ...