> #############6.2一元线性回归分析
> x<-c(0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23)
> y<-c(42.0,43.5,45.0,45.5,45.0,47.5,49.0,53.0,50.0,55.0,55.0,60.0)
> plot(x~y)
> lm.sol<-lm(y ~ x)
> summary(lm.sol) Call:
lm(formula = y ~ x) Residuals:
Min 1Q Median 3Q Max
-2.0431 -0.7056 0.1694 0.6633 2.2653 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.493 1.580 18.04 5.88e-09 ***
x 130.835 9.683 13.51 9.50e-08 *** #所以y=130.835x+28.493,***表示显著性水平,*越多越好
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #显著性水平 Residual standard error: 1.319 on 10 degrees of freedom
Multiple R-squared: 0.9481, Adjusted R-squared: 0.9429
F-statistic: 182.6 on 1 and 10 DF, p-value: 9.505e-08 ¥F检验,检验所有系数全是0的假设
> new=data.frame(x=0.16)#怎么预测多个数值的结果?
> lm.pred=predict(lm.sol,new,interval='prediction',level=0.95)
> lm.pred
fit lwr upr
1 49.42639 46.36621 52.48657

先求对数,再*100

> X<-matrix(c(
+ 194.5, 20.79, 1.3179, 131.79,
+ 194.3, 20.79, 1.3179, 131.79,
+ 197.9, 22.40, 1.3502, 135.02,
+ 198.4, 22.67, 1.3555, 135.55,
+ 199.4, 23.15, 1.3646, 136.46,
+ 199.9, 23.35, 1.3683, 136.83,
+ 200.9, 23.89, 1.3782, 137.82,
+ 201.1, 23.99, 1.3800, 138.00,
+ 201.4, 24.02, 1.3806, 138.06,
+ 201.3, 24.01, 1.3805, 138.05,
+ 203.6, 25.14, 1.4004, 140.04,
+ 204.6, 26.57, 1.4244, 142.44,
+ 209.5, 28.49, 1.4547, 145.47,
+ 208.6, 27.76, 1.4434, 144.34,
+ 210.7, 29.04, 1.4630, 146.30,
+ 211.9, 29.88, 1.4754, 147.54,
+ 212.2, 30.06, 1.4780, 147.80),
+ ncol=4, byrow=T,
+ dimnames = list(1:17, c("F", "h", "log", "log100")))#如何改变行和列的名称,如何按列排列数据?
>
> forbes<-data.frame(X)#把矩阵X转化为数据框
> plot(forbes$F, forbes$log100)#画出两个变量之间的散点图,观察是否存在线性趋势;学习
> #如何从数据框里面调取向量。怎么写坐标轴的名字和标题?
> #如何从数据框里面调取向量。怎么写坐标轴的名字和标题?
> lm.sol<-lm(log100~F, data=forbes)
> summary(lm.sol) Call:
lm(formula = log100 ~ F, data = forbes) Residuals:
Min 1Q Median 3Q Max
-0.32261 -0.14530 -0.06750 0.02111 1.35924 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.13087 3.33895 -12.62 2.17e-09 ***
F 0.89546 0.01645 54.45 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.3789 on 15 degrees of freedom
Multiple R-squared: 0.995, Adjusted R-squared: 0.9946
F-statistic: 2965 on 1 and 15 DF, p-value: < 2.2e-16 > abline(lm.sol)#在散点图上添加直线

#残差检验
y.res<-residuals(lm.sol);plot(y.res)#画出残差图
text(12,y.res[12], labels=12,adj=1.2)

#异常值的判断
library(car)
outlierTest(lm.sol)
> outlierTest(lm.sol)
rstudent unadjusted p-value Bonferroni p
12 12.40369 6.1097e-09 1.0386e-07
> plot(lm.sol)
Hit <Return> to see next plot: return
Hit <Return> to see next plot: return
Hit <Return> to see next plot: return
Hit <Return> to see next plot: return

##################################6.6多元回归分析
blood<-data.frame(
X1=c(76.0, 91.5, 85.5, 82.5, 79.0, 80.5, 74.5,
79.0, 85.0, 76.5, 82.0, 95.0, 92.5),
X2=c(50, 20, 20, 30, 30, 50, 60, 50, 40, 55,
40, 40, 20),
Y= c(120, 141, 124, 126, 117, 125, 123, 125,
132, 123, 132, 155, 147)
) #多元回归分析时,最好先检查变量之间的相关性
cor(blood)
library(car)
scatterplotMatrix(blood,spread=F,lty.smooth=2,main='blood plot matrix')

  

> lm.sol<-lm(Y ~ X1+X2, data=blood)
> summary(lm.sol) Call:
lm(formula = Y ~ X1 + X2, data = blood) Residuals:
Min 1Q Median 3Q Max
-4.0404 -1.0183 0.4640 0.6908 4.3274 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -62.96336 16.99976 -3.704 0.004083 **
X1 2.13656 0.17534 12.185 2.53e-07 ***
X2 0.40022 0.08321 4.810 0.000713 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.854 on 10 degrees of freedom
Multiple R-squared: 0.9461, Adjusted R-squared: 0.9354
F-statistic: 87.84 on 2 and 10 DF, p-value: 4.531e-07 > #回归系数的区间估计
> confint(lm.sol)
2.5 % 97.5 %
(Intercept) -100.8411862 -25.0855320
X1 1.7458709 2.5272454
X2 0.2148077 0.5856246
> #6.8预测
> new=data.frame(X1=80,X2=40)#怎么做多组预测?
> lm.pred=predict(lm.sol,new,interval='prediction',level=0.95)
> lm.pred
fit lwr upr
1 123.9699 117.2889 130.6509

 

所有代码:

#############6.2一元线性回归分析
x<-c(0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23)
y<-c(42.0,43.5,45.0,45.5,45.0,47.5,49.0,53.0,50.0,55.0,55.0,60.0)
plot(x~y)
lm.sol<-lm(y ~ x)
summary(lm.sol)
#6.4做预测
new=data.frame(x=0.16)#怎么预测多个数值的结果?
lm.pred=predict(lm.sol,new,interval='prediction',level=0.95)
lm.pred
######
X<-matrix(c(
194.5, 20.79, 1.3179, 131.79,
194.3, 20.79, 1.3179, 131.79,
197.9, 22.40, 1.3502, 135.02,
198.4, 22.67, 1.3555, 135.55,
199.4, 23.15, 1.3646, 136.46,
199.9, 23.35, 1.3683, 136.83,
200.9, 23.89, 1.3782, 137.82,
201.1, 23.99, 1.3800, 138.00,
201.4, 24.02, 1.3806, 138.06,
201.3, 24.01, 1.3805, 138.05,
203.6, 25.14, 1.4004, 140.04,
204.6, 26.57, 1.4244, 142.44,
209.5, 28.49, 1.4547, 145.47,
208.6, 27.76, 1.4434, 144.34,
210.7, 29.04, 1.4630, 146.30,
211.9, 29.88, 1.4754, 147.54,
212.2, 30.06, 1.4780, 147.80),
ncol=4, byrow=T,
dimnames = list(1:17, c("F", "h", "log", "log100")))#如何改变行和列的名称,如何按列排列数据? forbes<-data.frame(X)#把矩阵X转化为数据框
plot(forbes$F, forbes$log100)#画出两个变量之间的散点图,观察是否存在线性趋势;学习
#如何从数据框里面调取向量。怎么写坐标轴的名字和标题?
lm.sol<-lm(log100~F, data=forbes)
summary(lm.sol)
abline(lm.sol)#在散点图上添加直线 #残差检验
y.res<-residuals(lm.sol);plot(y.res)#画出残差图
text(12,y.res[12], labels=12,adj=1.2) #异常值的判断
library(car)
outlierTest(lm.sol) #去除异常值
i<-1:17; forbes12<-data.frame(X[i!=12, ])
lm12<-lm(log100~F, data=forbes12)
summary(lm12) ##################################6.6多元回归分析
blood<-data.frame(
X1=c(76.0, 91.5, 85.5, 82.5, 79.0, 80.5, 74.5,
79.0, 85.0, 76.5, 82.0, 95.0, 92.5),
X2=c(50, 20, 20, 30, 30, 50, 60, 50, 40, 55,
40, 40, 20),
Y= c(120, 141, 124, 126, 117, 125, 123, 125,
132, 123, 132, 155, 147)
) #多元回归分析时,最好先检查变量之间的相关性
cor(blood)
library(car)
scatterplotMatrix(blood,spread=F,lty.smooth=2,main='blood plot matrix') lm.sol<-lm(Y ~ X1+X2, data=blood)
summary(lm.sol) #回归系数的区间估计
confint(lm.sol) #6.8预测
new=data.frame(X1=80,X2=40)#怎么做多组预测?
lm.pred=predict(lm.sol,new,interval='prediction',level=0.95)
lm.pred

R语言与概率统计(三) 多元统计分析(上)的更多相关文章

  1. R语言与概率统计(三) 多元统计分析(中)

    模型修正 #但是,回归分析通常很难一步到位,需要不断修正模型 ###############################6.9通过牙膏销量模型学习模型修正 toothpaste<-data. ...

  2. R语言与概率统计(三) 多元统计分析(下)广义线性回归

    广义线性回归 > life<-data.frame( + X1=c(2.5, 173, 119, 10, 502, 4, 14.4, 2, 40, 6.6, + 21.4, 2.8, 2. ...

  3. R语言与概率统计(一) 描述性统计分析

      #查看已安装的包,查看已载入的包,查看包的介绍 ########例题3.1 #向量的输入方法 w<-c(75.0, 64.0, 47.4, 66.9, 62.2, 62.2, 58.7, 6 ...

  4. R语言与概率统计(二) 假设检验

    > ####################5.2 > X<-c(159, 280, 101, 212, 224, 379, 179, 264, + 222, 362, 168, 2 ...

  5. R语言结合概率统计的体系分析---数字特征

    现在有一个人,如何对这个人怎么识别这个人?那么就对其存在的特征进行提取,比如,提取其身高,其相貌,其年龄,分析这些特征,从而确定了,这个人就是这个人,我们绝不会认错. 同理,对数据进行分析,也是提取出 ...

  6. R语言与概率统计(六) 主成分分析 因子分析

    超高维度分析,N*P的矩阵,N为样本个数,P为指标,N<<P PCA:抓住对y对重要的影响因素 主要有三种:PCA,因子分析,回归方程+惩罚函数(如LASSO) 为了降维,用更少的变量解决 ...

  7. R语言与概率统计(五) 聚类分析

    #########################################0808聚类分析 X<-data.frame( x1=c(2959.19, 2459.77, 1495.63, ...

  8. R语言与概率统计(四) 判别分析(分类)

    Fisher就是找一个线L使得组内方差小,组间距离大.即找一个直线使得d最大. ####################################1.判别分析,线性判别:2.分层抽样 #inst ...

  9. R语言︱数据分组统计函数族——apply族用法与心得

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:apply族功能强大,实用,可以代替 ...

随机推荐

  1. 共享手机网络给电脑(USB连接)

    华为手机步骤: 设置-->搜索-->hdb-->允许HiSuite通过HDB连接设置 设置-->无线和网络-->移动网络共享-->USB共享网络

  2. BZOJ 1093 强连通缩点+DAG拓扑DP

    缩点后在一个DAG上求最长点权链 和方案数 注意转移条件和转移状态 if (nowmaxn[x] > nowmaxn[v]) { ans[v] = ans[x]; nowmaxn[v] = no ...

  3. hdu3715 Go Deeper[二分+2-SAT]/poj2723 Get Luffy Out[二分+2-SAT]

    这题转化一下题意就是给一堆形如$a_i + a_j \ne c\quad (a_i\in [0,1],c\in [0,2])$的限制,问从开头开始最多到哪条限制全是有解的. 那么,首先有可二分性,所以 ...

  4. Series和Dataframe分组时使用groupby函数的区别

    1. Dataframe分组用groupby("列名")或者groupby(["列名1","列名2"]) import pandas as ...

  5. 题解 [CF961G] Partitions

    题面 解析 首先我们观察这个定义, 可以发现每个元素在统计答案时是平等的, 也就是单个元素的权值对答案没有特别的影响. 设元素权值为\(w[i]\), 那么我们就可以知道答案是\(\sum_{i=1} ...

  6. 010_linuxC++之_运算符重载

    (一)运算符重载:运算符重载,就是对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型. (二)实现类不同对象里中变量的相加 (三)程序 #include <iostream> ...

  7. 【CUDA 基础】6.2 并发内核执行

    title: [CUDA 基础]6.2 并发内核执行 categories: - CUDA - Freshman tags: - 流 - 事件 - 深度优先 - 广度优先 - 硬件工作队列 - 默认流 ...

  8. python一些问题

    1.对于字符变量来说不需要深度复制,字符变量是不能改变的 2.文件读取结尾的判断是通过判读 line=self.fd.readline() if not line: //结束了 不用通过判断字符长度. ...

  9. node中的stream(流)内置模块

    stream是Node.js提供的又一个仅在服务区端可用的模块,目的是支持“流”这种数据结构. 什么是流?流是一种抽象的数据结构.想象水流,当在水管中流动时,就可以从某个地方(例如自来水厂)源源不断地 ...

  10. 使用Camtasia 9 录制屏幕软件

    Camtasia 9 录制屏幕软件,并且有丰富的专业剪辑功能.