题目链接:https://www.luogu.org/problem/CF1228C

问题可以转化为:求质数 $p$ 在 $1\sim n$ 中的每个数中的次幂之和.

因为 $p$ 是一个质数,只能由 $1$ 乘以 $p$ 表示出来,所以可以将问题转化为求 $p$ 在 $n!$ 中出现的次幂.

我们可以像提取公因式一样地去提取这个 $p$.

那么,先考虑 $p$ 的贡献:$1\sim n$ 中能被 $p$ 整除的乘积为 $p^{\frac{n}{p}}\times (\frac{n}{p}!)$

然后递归处理啊 $\frac{n}{p}!$ 中 $p$ 出现的次数.

由于 $p>2$,而 $n<10^8$,所以提取次数不会超过 $65$,复杂度是很优秀的.

#include <bits/stdc++.h>
#define mod 1000000007
#define ll unsigned long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
vector<ll>v;
ll qpow(ll base,ll k)
{
ll tmp=1ll;
for(;k;k>>=1,base=base*base%mod) if(k&1) tmp=tmp*base%mod;
return tmp;
}
int main()
{
int i,j;
ll x,n,p;
// setIO("input");
scanf("%lld%lld",&x,&n);
p=x;
for(i=2;i*i<=p;++i)
{
if(p%i==0)
{
v.push_back(i);
for(;p%i==0;) p/=i;
}
}
if(p>1) v.push_back(p);
ll ans=1ll;
for(i=0;i<v.size();++i)
{
ll m=n;
ll now=0;
while(m>=v[i])
{
now+=m/v[i];
m/=v[i];
}
ans=ans*qpow(v[i], now)%mod;
}
printf("%lld\n",(long long)ans);
return 0;
}

  

CF #589 (Div. 2)C. Primes and Multiplication 快速幂+质因数的更多相关文章

  1. Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)

    链接: https://codeforces.com/contest/1228/problem/C 题意: Let's introduce some definitions that will be ...

  2. CF #589 (Div. 2) D. Complete Tripartite 构造

    这个 D 还是十分友好的~ 你发现这 $3$ 个集合形成了一个环的关系,所以随意调换顺序是无所谓的. 然后随便让 $1$ 个点成为第 $2$ 集合,那么不与这个点连边的一定也属于第二集合. 然后再随便 ...

  3. Codeforces Round #324 (Div. 2) B. Kolya and Tanya 快速幂

    B. Kolya and Tanya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pro ...

  4. Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  5. Codeforces Round #518 (Div. 1) Computer Game 倍增+矩阵快速幂

    接近于死亡的选手没有水平更博客,所以现在每五个月更一篇. 这道题呢,首先如果已经有权限升级了,那么后面肯定全部选的是 \(p_ib_i\) 最高的. 设这个值为 \(M=\max \limits_i ...

  6. CF #376 (Div. 2) C. dfs

    1.CF #376 (Div. 2)    C. Socks       dfs 2.题意:给袜子上色,使n天左右脚袜子都同样颜色. 3.总结:一开始用链表存图,一直TLE test 6 (1)如果需 ...

  7. CF #375 (Div. 2) D. bfs

    1.CF #375 (Div. 2)  D. Lakes in Berland 2.总结:麻烦的bfs,但其实很水.. 3.题意:n*m的陆地与水泽,水泽在边界表示连通海洋.最后要剩k个湖,总要填掉多 ...

  8. CF #374 (Div. 2) D. 贪心,优先队列或set

    1.CF #374 (Div. 2)   D. Maxim and Array 2.总结:按绝对值最小贪心下去即可 3.题意:对n个数进行+x或-x的k次操作,要使操作之后的n个数乘积最小. (1)优 ...

  9. CF #374 (Div. 2) C. Journey dp

    1.CF #374 (Div. 2)    C.  Journey 2.总结:好题,这一道题,WA,MLE,TLE,RE,各种姿势都来了一遍.. 3.题意:有向无环图,找出第1个点到第n个点的一条路径 ...

随机推荐

  1. 【满k叉树】Perfect Tree

    题目描述 Given a positive integer k, we define a rooted tree to be k-perfect, if and only if it meets bo ...

  2. linux上启动tomcat报错:Failed to read schema document 'http://www.springframework.org/schema/data/mongo/spring-mongo-2.0.xsd

    本文原文连接: http://blog.csdn.net/bluishglc/article/details/7596118 ,转载请注明出处! spring在加载xsd文件时总是先试图在本地查找xs ...

  3. Codeforces Round #557 Div. 1 based on Forethought Future Cup - Final Round

    A:开场就读错题.读对了之后也没啥好说的. #include<bits/stdc++.h> using namespace std; #define ll long long #defin ...

  4. sqlserver 聚集索引 非聚集索引

    聚集索引是一种对磁盘上实际数据重新组织以按指定的一列或者多列值排序.像我们用到的汉语字典,就是一个聚集索引.换句话说就是聚集索引会改变数据库表中数据的存放顺序.非聚集索引不会重新组织表中的数据,而是对 ...

  5. dotnetcore下解压zip文件,解决中文文件名乱码问题

    (迄今为止网上那些说的用Encoding.Default解决中文文件名乱码的都不能真正解决问题!) 1.在程序开始处 Encoding.RegisterProvider(CodePagesEncodi ...

  6. 傅里叶变换通俗解释及快速傅里叶变换的python实现

    通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...

  7. Navicat MySql 连不上 本地开发环境 MySQL8.0

    原因:   新版mysql数据库的加密方式改变,进而导致Navicat连接输入的密码不能与安装时输入的密码匹配,那如何解决这个问题呢?很简单,只需要一句代码的事儿~ 1.打开MySQL 8.0 Com ...

  8. Java 之 IDEA 的 Debug 追踪

    使用 IDEA 的断点调试功能,查看程序的运行过程. 1.在有效代码行,点击行号右边的空白区域,设置断点,程序执行到断点将停止,我们可以手动来运行程序 2.点击 Debug 运行模式 3.程序停止在断 ...

  9. 批量删除checkbox前台后台

    <%@ page contentType="text/html;charset=UTF-8" %><%@ include file="/WEB-INF/ ...

  10. shell取消键盘回显

    使用下面这个命令取消回显 stty -echo   使用下面这个命令打开回显   stty echo