模板题……

\[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i][k|j][({i\over k},{j\over k})=1]=\sum\limits_{i=1}^{a\over k}\sum\limits_{j=1}^{b\over k}[(i,j)=1]
\]

继续化简

\[\sum\limits_{i=1}^{b\over k}\sum\limits_{j=1}^{d\over k}\sum\limits_{t|(i,j)}\mu(t)=\sum\limits_{i=1}^{b\over k}[t|i]\sum\limits_{j=1}^{d\over k}[t|j]\mu(t)=\sum\limits_{t=1}^{max({b\over k},{d\over k})}{\lfloor{{b\over k}\over t}\rfloor}{\lfloor{{d\over k}\over t}\rfloor}\mu(t)
\]

然后上反演整除分块即可

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1000005; int pr[N*2],is[N*2],mu[N*2],cnt; signed main() {
mu[0]=mu[1]=1; is[1]=1;
for(int i=2;i<N;i++) {
if(is[i]==0) {
pr[++cnt]=i;
mu[i]=-1;
}
for(int j=1; j<=cnt&&pr[j]*i<N; ++j) {
is[pr[j]*i]=1;
if(i%pr[j]==0) {
mu[pr[j]*i]=0;
break;
}
else {
mu[pr[j]*i]=-mu[i];
}
}
}
for(int i=1;i<N;i++) mu[i]+=mu[i-1]; int a,b,d;
cin>>a>>b>>d;
a/=d; b/=d;
int ans = 0;
int m=min(a,b);
int l=1,r;
while(l<=m) {
r=min(a/(a/l),b/(b/l));
ans+=(mu[r]-mu[l-1])*(a/l)*(b/l);
l=r+1;
}
cout<<ans<<endl;
}

[P4450] 双亲数 - 莫比乌斯反演,整除分块的更多相关文章

  1. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  2. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  3. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  4. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  5. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  6. 【BZOJ2045】双亲数 莫比乌斯反演

    [BZOJ2045]双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用 ...

  7. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

  8. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  9. P2568 莫比乌斯反演+整除分块

    #include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...

随机推荐

  1. 使用MuMu模拟器调试AndroidStudio项目

    1.安装一款安卓模拟器 ​ 本例使用网易MuMu模拟器,因为目前网络上这类模拟器只有mumu的安卓版本是最新的,为6.0,安卓自带的Virtual Device虽然有很新的版本,但如果pc配置不是很高 ...

  2. macOS Catalina 10.15版本下anaconda安装后navigator无法正常打开的解决方法

    我最近用闲置的money购置了一个ipad,想利用ipad作为mac的复屏,但是这需要将macos升级到catalina才能支持这个功能,但是catalina的更新会导致很多软件都发生无法启动或一些奇 ...

  3. MATLAB中冒号的用法解析

    MATLAB中冒号的用法解析 1.: 表示所有的意思. (1)如:a(1,:) 表示a的第1行,示例: 结果: 同样的如果a(2,:)表示a的第2行 (2)反过来,a(:,2) 表示a的第3列,示例: ...

  4. Django 表关系的创建

    Django 表关系的创建 我们知道,表关系分为一对多,多对多,一对一 我们以一个图书管理系统为背景,设计了下述四张表,让我们来找一找它们之间的关系 Book与Publish表 找关系:一对多 左表( ...

  5. 初学Python,需要装什么软件?

    学习Python需要安装什么软件呢?也许你是一位编程小白,还不知道如何如何安装Python软件和开发环境.那么今天我们就来学一下关于Python软件.开发环境的相关知识,希望对你有用. 学Python ...

  6. 00-django | 02-处理HTTP请求

    00-django | 02-处理HTTP请求 python Django Django 处理 HTTP 请求 Hello 视图函数 我们先以一个最简单的 Hello World 为例来看看 djan ...

  7. 笔记-Git基础

    git配置 git config --global user.name "xxx" //配置用户名 git config --global user.email "xxx ...

  8. Remoting、WCF、WebAPI、WCFREST、WebService之间的区别与联系

    在.net平台下,有大量的技术让你创建一个服务,像Web Service,WCF,Web API,Remoting,我们来对比一下他们的区别与联系 Remoting Web Service WCF W ...

  9. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  10. 论文-MobileNet-V1、ShuffleNet-V1、MobileNet-V2、ShuffleNet-V2、MobileNet-V3

    1.结构对比 1)MobileNet-V1 2)ShuffleNet-V1 3)MobileNet-V2 4)ShuffleNet-V2