PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting
Challenge: forecasting for non-stationary signals and multiple future steps prediction
?? how to deal with non-stationary datasets??
Introduction
one-step prediction problem VS multi-step prediction;
multi-step forecasting requires to accurately describe time series evolution.
limitation of the euclidean loss(MSE): in non-stationary context;
PP: Shape and time distortion loss for training deep time series forecasting models的更多相关文章
- Training (deep) Neural Networks Part: 1
Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...
- Training Deep Neural Networks
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html //转载于 Training Deep Neural ...
- PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...
- a Javascript library for training Deep Learning models
w强化算法和数学,来迎接机器学习.神经网络. http://cs.stanford.edu/people/karpathy/convnetjs/ ConvNetJS is a Javascript l ...
- PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...
- [Xavier] Understanding the difficulty of training deep feedforward neural networks
目录 概 主要内容 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural netwo ...
- 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations
目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...
- 论文翻译:BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1
目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2 ...
- Xavier——Understanding the difficulty of training deep feedforward neural networks
1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...
随机推荐
- Linux部署MongoDB
下载安装包 打开网站 https://www.mongodb.com/download-center/community查找与Linux版本一致的MongoDB安装包.我这里选择安装包格式为tgz压缩 ...
- Learning hard 学习笔记
第一章 你真的了解C#吗 1.什么是C#, 微软公司,面向对象,运行于.NET Framework之上, 2.C#能编写哪些应用程序, Windows应用桌面程序,Web应用程序,Web服务, 3.什 ...
- P4735 最大异或和 /【模板】可持久化Trie
//tire的可持久化 //线段树的可持久化——主席树 //可持久化的前提:本身的拓扑结构在操作时不变 //可以存下来数据结构的所有历史版本 //核心思想:只记录每一个版本与前一个版本不一样的地方 / ...
- JavaSE学习笔记(12)---线程
JavaSE学习笔记(12)---线程 多线程 并发与并行 并发:指两个或多个事件在同一个时间段内发生. 并行:指两个或多个事件在同一时刻发生(同时发生). 在操作系统中,安装了多个程序,并发指的是在 ...
- jQuery---小火箭返回顶部案例
小火箭返回顶部案例 1. 滚动页面,当页面距离顶部超出1000px,显示小火箭. 封装在scroll函数里,当前页面距离顶部为$(window).scrollTop >=1000 小火箭显示和隐 ...
- cf1184E1
题意简述:给出n个点m条边的无向图,你可以修改第一条边的权值,使得他可能会处于一棵最小生成树中,问你第一条的权值最大(不超过1e9)可以改为多少 题解:不去使用第一条边去跑最小生成树,然后在跑的过程中 ...
- adworld easy_RSA | RSA算法
题目描述: 解答出来了上一个题目的你现在可是春风得意,你们走向了下一个题目所处的地方 你一看这个题目傻眼了,这明明是一个数学题啊!!!可是你的数学并不好.扭头看向小鱼,小鱼哈哈一笑 ,让你在学校里面不 ...
- Python安装和配置环境变量(简明教程)
声明:借鉴Python 简明教程 安装我们在本书中提到的「Python 3」指的是 Python 版本大于或等于 Python 3.6.0. 针对Python3.6.版本:注意数据的缓存机制 # ## ...
- Git无法提交branch is currently checked out
报错 git无法提交,提示 ! [remote rejected] master -> master (branch is currently checked out) 原因 初始化没有用git ...
- openlayers添加弹出框
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...