numpy.sort()函数##

该函数提供了多种排序功能,支持归并排序,堆排序,快速排序等多种排序算法

使用numpy.sort()方法的格式为:

numpy.sort(a,axis,kind,order)

  • a:要排序的数组
  • axis:沿着排序的轴,axis=0按照列排序,axis=1按照行排序。
  • kind:排序所用的算法,默认使用快速排序。常用的排序方法还有
    • quicksort:快速排序,速度最快,算法不具有稳定性
    • mergesort:归并排序,优点是具有稳定性,空间复杂度较高,一般外部排序时才会考虑
    • heapsort:堆排序,优点是堆排序在最坏的情况下,其时间复杂度也为O(nlogn),是一个既最高效率又最节省空间的排序方法
  • order:如果包含字段,则表示要排序的字段(比如按照数组中的某个元素项进行排序)

    下面通过一个实例来具体了解numpy.sort()函数的用法

    假设我们有一组用户信息,包含用户的用户名以及用户的年龄,我们按照用户的年龄来进行排序
dt=np.dtype([('name','S20'),('age','i4')])
a=np.array([('adm','19'),('wan','23'),('ade','23')],dtype=dt)
s=np.sort(a,order='age',kind='quicksort')
print(s)

运行结果:

 [(b'adm', 19) (b'ade', 23) (b'wan', 23)]
Process finished with exit code 0

numpy.argsort()函数##

numpy.argsort()函数返回的时从小到大的元素的索引

可以通过以下的实例更好的理解

使用argsort()方法返回索引并重构数组
x=np.array([3,8,11,2,5])
print('返回从小到大的索引')
y=np.argsort(x)
print(y)
print('以索引对原数组排序')
print(x[y])
print('重构原数组')
for i in y:
print(x[i],end=",")

运行结果:

返回从小到大的索引
[3 0 4 1 2]
以索引对原数组排序
[ 2 3 5 8 11]
重构原数组
2,3,5,8,11,
Process finished with exit code 0

numpy.lexsort()函数##

numpy.sort()函数可对于多个序列进行排序,例如我们在比较成绩的时候先比较总成绩,由后列到前列的优先顺序进行比较,这时就用到了lexsort()方法

nm =  ('raju','anil','ravi','amar')
dv = ('f.y.', 's.y.', 's.y.', 'f.y.')
ind = np.lexsort((dv,nm))
print ('调用 lexsort() 函数:')
print (ind)
print ('\n')
print ('使用这个索引来获取排序后的数据:')
print ([nm[i] + ", " + dv[i] for i in ind])

运行结果:

使用这个索引来获取排序后的数据:
['amar, f.y.', 'anil, s.y.', 'raju, f.y.', 'ravi, s.y.'] Process finished with exit code 0

numpy.partition()函数##

numpy.partition()叫做分区排序,可以制定一个数来对数组进行分区。

格式如下:

partition(a,kth[,axis,kind,order])

实例:实现将数组中比7小的元素放到前面,比7大的放后面

# partition分区排序
a=np.array([2,3,9,1,0,7,23,13])
print(np.partition(a,7))

运行结果:

[ 0  1  2  3  7  9 13 23]

Process finished with exit code 0

实例:实现将数组中比7小的元素放到前面,比10大的放后面,7-10之间的元素放中间

partition分区排序
a = np.array([2, 3, 9, 1, 6, 5, 0, 12, 10, 7, 23, 13, 27])
print(np.partition(a, (7, 10)))
print(np.partition(a, (2, 7)))

运行结果

[ 1  0  2  3  5  6  7  9 10 12 13 23 27]
[ 0 1 2 6 5 3 7 9 10 12 23 13 27] Process finished with exit code 0

注意:(7,10)中10的位置,数值不能超过数组长度。

numpy.nonzero()函数##

返回输入数组中非零元素的索引

a = np.array([[30,40,0],[0,20,10],[50,0,60]])
print ('我们的数组是:')
print (a)
print ('\n')
print ('调用 nonzero() 函数:')
print (np.nonzero (a))

运行结果:

我们的数组是:
[[30 40 0]
[ 0 20 10]
[50 0 60]] 调用 nonzero() 函数:
(array([0, 0, 1, 1, 2, 2]), array([0, 1, 1, 2, 0, 2]))
Process finished with exit code 0

numpy.where()函数##

返回满足输入条件的索引

 where()函数的使用
b = np.array([2, 1, 3, 0, 4, 7, 23, 13, 27])
y = np.where(b > 10)
print(y)
print('利用索引得到数组中的元素')
print(b[y])

运行结果:

(array([6, 7, 8], dtype=int64),)
利用索引得到数组中的元素
[23 13 27] Process finished with exit code 0

numpy.extract()函数##

numpy.extract()函数实现的是返回自定义条件的元素

# extract()自定义元素筛选
b = np.array([2, 1, 3, 0, 4, 7, 23, 13, 27])
con = np.mod(b, 2) == 0
y = np.extract(con, b)
print(a[y])

运行结果:


[9 2 6] Process finished with exit code 0

其它排序函数##

numpy.argmax() 和 numpy.argmin()函数分别沿给定轴返回最大和最小元素的索引。numpy.sort_complex(a)函数实现对复数按照先实部后虚部的顺序进行排序。numpy.argpartition(a, kth[, axis, kind, order])函数实现通过指定关键字沿着指定的轴对数组进行分区。

下面举一个复数排序的例子:

t = np.array([ 1.+2.j,  2.-1.j,  3.-3.j,  3.-2.j,  3.+5.j])
res = np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
print(res)

运行结果:

[1.+2.j 2.-1.j 3.-3.j 3.-2.j 3.+5.j]

Process finished with exit code 0

NumPy排序的更多相关文章

  1. NumPy 排序、条件刷选函数

    NumPy 排序.条件刷选函数 NumPy 提供了多种排序的方法. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种排序算法 ...

  2. NumPy排序、搜索和计数函数

    NumPy - 排序.搜索和计数函数 NumPy中提供了各种排序相关功能. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种 ...

  3. NumPy 排序、查找、计数

    章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切 ...

  4. numpy排序(sort、argsort、lexsort、partition、sorted)

    1.sort numpy.sort(a, axis=1, kind='quicksort', order=None) a :所需排序的数组 axis:数组排序时的基准,axis=0按行排列:axis= ...

  5. Numpy 排序和使用索引

    # 导包 import numpy as np 排序 .sort() x = np.arange(16) # array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

  6. 15、numpy——排序、条件刷选函数

    NumPy 提供了多种排序的方法. 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性. 下表显示了三种排序算法的比较. 种类 速度 最坏情况 ...

  7. 吴裕雄--天生自然Numpy库学习笔记:NumPy 排序、条件刷选函数

    numpy.sort() 函数返回输入数组的排序副本.函数格式如下: numpy.sort(a, axis, kind, order) 参数说明: a: 要排序的数组 axis: 沿着它排序数组的轴, ...

  8. Python 排序和numpy排序,得到排序后索引序列(及源list的序列)

    Python list 排序 & np list 排序 nums = [1.25, 0.98, 6.13, 7.62] li = np.array(nums) print(li) out = ...

  9. numpy 排序, 查询功能

    https://docs.scipy.org/doc/numpy/reference/routines.sort.html  

随机推荐

  1. jQuery-自己封装的弹框

    (function () { CDK={ cfm:function(resFun,errFun){ var confirm=document.createElement('div'); confirm ...

  2. 漏洞扫描工具AWVS介绍及安装教程

    PS:webug靶场全都通关了,你也就是个合格的新手了. 上次我们在通关webug靶场第三关的时候,提到一个漏洞扫描工具叫做AWVS.这次我们介绍一下它. 1 AWVS漏洞扫描工具 Acunetix ...

  3. H3C ping命令的输出

  4. 【t081】序列长度(贪心做法)

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 有一个整数序列,我们不知道她的长度是多少(即序列中整数的个数),但我们知道在某些区间中至少有多少个整数 ...

  5. margin为负值的几种情况

    1.margin-top为负值像素 margin-top为负值像素,偏移值相对于自身,其后元素受影响,见如下代码: 1 <!DOCTYPE html> 2 <html lang=&q ...

  6. vue-learning:10-template-ref

    使用ref直接访问DOM元素 传统DOM操作或jQuery操作DOM,都必须是选择器先选择对应的DOM元素.比如: <button id="btn">按钮</bu ...

  7. vue-learning:27 - component - 组件三大API之二:event

    组件三大API之二: event 在上一节中讲到prop单向下行数据绑定的特征,父组件向子组件传值通过prop实现,那如果有子组件需要向父组件传值或其它通信请求,可以通过vue的事件监听系统(触发事件 ...

  8. 【23.91%】【hdu 4694】Important Sisters("支NMLGB配树"后记)(支配树代码详解)

    Time Limit: 7000/7000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Submission( ...

  9. HDU 2102 A计划 DFS与BFS两种写法 [搜索]

    1.题意:一位公主被困在迷宫里,一位勇士前去营救,迷宫为两层,规模为N*M,迷宫入口为(0,0,0),公主的位置用'P'标记:迷宫内,'.'表示空地,'*'表示墙,特殊的,'#'表示时空传输机,走到这 ...

  10. 记一次手工清除挖矿病毒WannaMine V4.0的经历

    [作者:byeyear    邮箱:byeyear@hotmail.com    转载请注明] 前两天公司信息安全处通知我的计算机存在永恒之蓝漏洞并已被病毒感染,使用多方杀软及专杀工具均无法有效清除, ...