You are playing some computer game. One of its levels puts you in a maze consisting of n lines, each of which contains m cells. Each cell either is free or is occupied by an obstacle. The starting cell is in the row r and column c. In one step you can move one square up, left, down or right, if the target cell is not occupied by an obstacle. You can't move beyond the boundaries of the labyrinth.

Unfortunately, your keyboard is about to break, so you can move left no more than x times and move right no more than y times. There are no restrictions on the number of moves up and down since the keys used to move up and down are in perfect condition.

Now you would like to determine for each cell whether there exists a sequence of moves that will put you from the starting cell to this particular one. How many cells of the board have this property?

Input

The first line contains two integers n, m (1 ≤ n, m ≤ 2000) — the number of rows and the number columns in the labyrinth respectively.

The second line contains two integers r, c (1 ≤ r ≤ n, 1 ≤ c ≤ m) — index of the row and index of the column that define the starting cell.

The third line contains two integers x, y (0 ≤ x, y ≤ 109) — the maximum allowed number of movements to the left and to the right respectively.

The next n lines describe the labyrinth. Each of them has length of m and consists only of symbols '.' and '*'. The j-th character of the i-th line corresponds to the cell of labyrinth at row i and column j. Symbol '.' denotes the free cell, while symbol '*' denotes the cell with an obstacle.

It is guaranteed, that the starting cell contains no obstacles.

Output

Print exactly one integer — the number of cells in the labyrinth, which are reachable from starting cell, including the starting cell itself.

Examples
Input

Copy
4 5
3 2
1 2
.....
.***.
...**
*....
Output

Copy
10
Input

Copy
4 4
2 2
0 1
....
..*.
....
....
Output

Copy
7
Note

Cells, reachable in the corresponding example, are marked with '+'.

First example:

+++..
+***.
+++**
*+++.

Second example:

.++.
.+*.
.++.
.++. 题意 : 给你一个n*m 的矩阵,再给你一个起点,你可以往上下左右四个方向走,但同时又有一个往左右的步数限制,询问所有可能到达的点数有多少个?
思路分析 :
  比赛场上直接写了一个 bfs ,pp 了,自信以为A了,今晚又可以涨分,结果....
  其实有一点贪心的想法,就是可以上下走的时候一定要先上下走,最后再左右走,用一个双端队列即可
代码示例:
int n, m;
int sx, sy;
int sl, sr; char mp[2005][2005];
struct node
{
int x, y;
int l, r;
};
deque<node>que;
bool vis[2005][2005]; int dir[4][2] = {1, 0, -1, 0, 0, 1, 0, -1}; void bfs(){
que.push_front({sx, sy, sl, sr});
int ans = 0;
//vis[sx][sy] = 1; while(!que.empty()){
node v = que.front(); que.pop_front();
if (vis[v.x][v.y]) continue;
vis[v.x][v.y] = true;
ans++;
for(int i = 0; i < 4; i++){
int fx = v.x+dir[i][0];
int fy = v.y+dir[i][1];
if (fx < 1 || fx > n || fy < 1 || fy > m || mp[fx][fy] == '*'||vis[fx][fy]) continue; if (i == 2) {
if (v.r > 0) que.push_back({fx, fy, v.l, v.r-1});
}
else if (i == 3) {
if (v.l > 0) que.push_back({fx, fy, v.l-1, v.r});
}
else que.push_front({fx, fy, v.l, v.r});
}
}
printf("%d\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> m;
cin >> sx >> sy;
cin >> sl >> sr;
for(int i = 1; i <= n; i++){
scanf("%s", mp[i]+1);
}
bfs();
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(mp[i][j] == '*') printf("*");
else if (vis[i][j]) printf("+");
else printf(".");
}
printf("\n");
}
return 0;
}

2 . 用类似最短路的写法,每次左右走的时候步数+1,上下走的时候步数不变

代码示例:

const int inf = 0x3f3f3f3f;

int n, m;
int sx, sy, sl, sr;
char mp[2005][2005];
struct node
{
int x, y;
int l, r;
int sum;
bool operator< (const node &v)const{
return sum < v.sum;
}
};
priority_queue<node>que;
bool vis[2005][2005];
int bu[2005][2005];
int dir[4][2] = {1, 0, -1, 0, 0, 1, 0, -1}; void bfs() {
que.push({sx, sy, sl, sr, sl+sr});
memset(vis, false, sizeof(vis));
memset(bu, inf, sizeof(bu));
int ans = 0;
bu[sx][sy] = 0; while(!que.empty()){
node v = que.top(); que.pop(); if (!vis[v.x][v.y]) ans++;
vis[v.x][v.y] = 1;
for(int i = 0; i < 4; i++){
int fx = dir[i][0]+v.x;
int fy = dir[i][1]+v.y; if (fx < 1 || fx > n || fy < 1 || fy > m || mp[fx][fy] == '*') continue;
if (bu[v.x][v.y] >= bu[fx][fy]) continue;
bu[fx][fy] = bu[v.x][v.y]; if ((i == 2) || (i == 3)) bu[fx][fy]++;
if (i == 2) {
if (v.r) que.push({fx, fy, v.l, v.r-1, v.l+v.r-1});
}
else if (i == 3) {
if (v.l) que.push({fx, fy, v.l-1, v.r, v.l+v.r-1});
}
else que.push({fx, fy, v.l, v.r, v.l+v.r});
}
}
printf("%d\n", ans);
} int main() {
cin >> n >> m;
cin >> sx >> sy;
cin >> sl >> sr;
for(int i = 1; i <= n; i++) scanf("%s", mp[i]+1);
bfs();
return 0;
}
												

带限制的广搜 codeforces的更多相关文章

  1. HDU-1026 Ignatius and the Princess I(BFS) 带路径的广搜

      此题需要时间更少,控制时间很要,这个题目要多多看, Ignatius and the Princess I Time Limit: 2000/1000 MS (Java/Others)    Me ...

  2. CodeForces 682C Alyona and the Tree(广搜 + 技巧)

    方法:从根节点开始广搜,如果遇到了应该删除的点,就再广搜删掉它的子树并标记,然后统计一下被标记的个数就是答案,所谓技巧就是从根节点开始搜索的时候,如果遇到了某个节点的距离<0,就让它是0,0可以 ...

  3. Codeforces 1105D(双层广搜)

    要点 题意:可以拐弯,即哈密顿距离 注意不可以直接一个一个搜,这过程中会把下一轮的标记上,导致同一轮的其它点没能正常完成应有的搜索 因此采用双层广搜,把同一轮先都出队列再的一起搜 #include & ...

  4. 『ice 离散化广搜』

    ice(USACO) Description Bessie 在一个冰封的湖面上游泳,湖面可以表示为二维的平面,坐标范围是-1,000,000,000..1,000,000,000. 湖面上的N(1 & ...

  5. 队列&广搜

    搜索里有深搜,又有广搜,而广搜的基础就是队列. 队列是一种特殊的线性表,只能在一段插入,另一端输出.输出的那一端叫做队头,输入的那一端叫队尾.是一种先进先出(FIFO)的数据结构. 正经的队列: 头文 ...

  6. HDU 1072 Nightmare (广搜)

    题目链接 Problem Description Ignatius had a nightmare last night. He found himself in a labyrinth with a ...

  7. 用广搜实现的spfa

    用广搜实现的spfa,如果是用一般的最短路,会发现构图很麻烦,因为它不是路径带权值,而是自身带权值.写起来只要注意,在点出队列的生活将其标记为0,在要压入队列的时候,判断其标记是否为0,为0表示队列中 ...

  8. CF520B——Two Buttons——————【广搜或找规律】

    J - Two Buttons Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Su ...

  9. HDU--杭电--1195--Open the Lock--深搜--都用双向广搜,弱爆了,看题了没?语文没过关吧?暴力深搜难道我会害羞?

    这个题我看了,都是推荐的神马双向广搜,难道这个深搜你们都木有发现?还是特意留个机会给我装逼? Open the Lock Time Limit: 2000/1000 MS (Java/Others)  ...

随机推荐

  1. [转]在eclipse中,用maven创建一个web项目工程

    1.在eclipse中用maven创建项目,右键new>>Maven Project 2.点击next继续 3.点击next继续,选择maven-archetype-webapp, 4.点 ...

  2. C++的价值

    In May 2010, the GCC steering committee decided to allow use of a C++ compiler to compile GCC. The c ...

  3. HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)

    传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...

  4. 2018-6-15-win10-uwp-xaml-绑定接口

    title author date CreateTime categories win10 uwp xaml 绑定接口 lindexi 2018-6-15 21:7:19 +0800 2018-2-1 ...

  5. ZeroNet搭建个人网站,一些搞笑图片

    ZeroNet是一个利用比特币加密和BT技术提供不受审查的网络与通信的BT平台,ZeroNet网络功能已经得到完整的种子的支持和加密连接,保证用户通信和文件共享的安全.使用ZeroNet,你可以匿名上 ...

  6. springBoot中“MockMvc”的进行Controller进行单元测试:application/octet-stream' not supported问题小结

    解决方案:这个问题其实是Content-type的问题,只需要在相关的代码加入相关Content-type中就可以了,代码如下: mockMvc.perform(post("/user&qu ...

  7. 【33.18%】【hdu 5877】Weak Pair (3种解法)

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submissi ...

  8. 面试中常考的字符串操作方法大全,包含ES6

    原文链接:http://caibaojian.com/js-string.html 一.charAt() 返回在指定位置的字符. var str="abc" console.log ...

  9. 递归&时间模块&os模块

    递归 递归调用 一个函数,调用了自身,称为递归调用 递归函数:一个会调用自身的函数称为递归函数 凡是循环能干的事,递归都能干 方式: 写出临界条件 找这一次和上一次的关系 假设当前函数已经能用,调用自 ...

  10. CodeForces - 617E XOR and Favorite Number (莫队+前缀和)

    Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is g ...