平衡树模板【splay的实现】
【平衡树splay实现】
无注释代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF=1e9+,MAXN=1e5+;
int N;
int key[MAXN],cnt[MAXN],ch[MAXN][],siz[MAXN],f[MAXN];
int root,sz;
inline void clear(int x){
key[x]=cnt[x]=ch[x][]=ch[x][]=siz[x]=f[x]=;
}
inline int get(int x){
return x==ch[f[x]][];
}
inline void upd(int x){
if(x){
siz[x]=cnt[x];
if(ch[x][]){
siz[x]+=siz[ch[x][]];
}
if(ch[x][]){
siz[x]+=siz[ch[x][]];
}
}
}
inline void rotate(int x){
int fa=f[x],gf=f[fa],which=get(x);
ch[fa][which]=ch[x][which^];
f[ch[fa][which]]=fa;
ch[x][which^]=fa;
f[fa]=x;
f[x]=gf;
if(gf){
ch[gf][ch[gf][]==fa]=x;
}
upd(fa);
upd(x);
}
inline void splay(int x){
for(int fa;(fa=f[x]);rotate(x)){
if(f[fa]){
rotate(get(x)==get(fa)?fa:x);
}
}
root=x;
}
inline void ins(int x){
if(!root){
sz++;
clear(sz);
root=sz;
cnt[sz]=siz[sz]=;
key[sz]=x;
return;
}
int cur=root,fa=;
while(){
if(x==key[cur]){
cnt[cur]++;
upd(cur);
upd(fa);
splay(cur);
return;
}
fa=cur;
cur=ch[fa][key[fa]<x];
if(!cur){
clear(++sz);
f[sz]=fa;
cnt[sz]=siz[sz]=;
ch[fa][key[fa]<x]=sz;
key[sz]=x;
upd(fa);
splay(sz);
return;
}
}
}
inline int find(int x){
int cur=root,ret=;
while(){
if(x<key[cur]){
cur=ch[cur][];
}else{
ret+=(ch[cur][]?siz[ch[cur][]]:);
if(key[cur]==x){
splay(cur);
return ret+;
}
ret+=cnt[cur];
cur=ch[cur][];
}
}
}
inline int findx(int x){
int cur=root;
while(){
if(ch[cur][]&&x<=siz[ch[cur][]]){
cur=ch[cur][];
}else{
int tmp=(ch[cur][]?siz[ch[cur][]]:)+cnt[cur];
if(x<=tmp){
return key[cur];
}
x-=tmp;
cur=ch[cur][];
}
}
}
inline int pre(){
int cur=ch[root][];
while(ch[cur][]){
cur=ch[cur][];
}
return cur;
}
inline int nxt(){
int cur=ch[root][];
while(ch[cur][]){
cur=ch[cur][];
}
return cur;
}
inline void del(int x){
find(x);
if(cnt[root]>){
cnt[root]--;
upd(root);
return;
}
if(!ch[root][]&&!ch[root][]){
clear(root);
root=;
return;
}
if(!ch[root][]){
int old=root;
root=ch[root][];
f[root]=;
clear(old);
return;
}
if(!ch[root][]){
int old=root;
root=ch[root][];
f[root]=;
clear(old);
return;
}
int old=root,p=pre();
splay(p);
ch[root][]=ch[old][];
f[ch[old][]]=root;
clear(old);
upd(root);
}
int main(){
scanf("%d",&N);
for(int i=;i<=N;i++){
int ii,jj;
scanf("%d%d",&ii,&jj);
switch(ii){
case :{
ins(jj);
break;
}
case :{
del(jj);
break;
}
case :{
printf("%d\n",find(jj));
break;
}
case :{
printf("%d\n",findx(jj));
break;
}
case :{
ins(jj);
printf("%d\n",key[pre()]);
del(jj);
break;
}
case :{
ins(jj);
printf("%d\n",key[nxt()]);
del(jj);
break;
}
}
}
return ;
}
变量声明:f[i]表示i的父结点,ch[i][0]表示i的左儿子,ch[i][1]表示i的右儿子,key[i]表示i的关键字(即结点i代表的那个数字),cnt[i]表示i结点的关键字出现的次数(相当于权值),size[i]表示包括i的这个子树的大小;sz为整棵树的大小,root为整棵树的根。
再介绍几个基本操作:
【clear操作】:将当前点的各项值都清0(用于删除之后)
inline void clear(int x){/*清空节点中的数据*/
key[x]=cnt[x]=ch[x][]=ch[x][]=siz[x]=f[x]=;
}
【get操作】:判断当前点是它父结点的左儿子还是右儿子
inline int get(int x){/*查询当前点是否为右孩子*/
return x==ch[f[x]][];
}
【update操作】:更新当前点的size值(用于发生修改之后)
inline void upd(int x){/*更新cnt和siz数组*/
if(x){
siz[x]=cnt[x];
if(ch[x][]){
siz[x]+=siz[ch[x][]];
}
if(ch[x][]){
siz[x]+=siz[ch[x][]];
}
}
}
【rotate操作】
这是原来的树,假设我们现在要将D结点rotate到它的父亲的位置。
step 1:
找出D的父亲结点(B)以及父亲的父亲(A)并记录。判断D是B的左结点还是右结点。
step 2:
我们知道要将Drotate到B的位置,二叉树的大小关系不变的话,B就要成为D的右结点了没错吧?
咦?可是D已经有右结点了,这样不就冲突了吗?怎么解决这个冲突呢?
我们知道,D原来是B的左结点,那么rotate过后B就一定没有左结点了对吧,那么正好,我们把G接到B的左结点去,并且这样大小关系依然是不变的,就完美的解决了这个冲突。
这样我们就完成了一次rotate,如果是右儿子的话同理。step 2的具体操作:
我们已经判断了D是B的左儿子还是右儿子,设这个关系为K;将D与K关系相反的儿子的父亲记为B与K关系相同的儿子(这里即为D的右儿子的父亲记为B的左儿子);将D与K关系相反的儿子的父亲即为B(这里即为把G的父亲记为B);将B的父亲即为D;将D与K关系相反的儿子记为B(这里即为把D的右儿子记为B);将D的父亲记为A。
最后要判断,如果A存在(即rotate到的位置不是根的话),要把A的儿子即为D。
显而易见,rotate之后所有牵涉到变化的父子关系都要改变。以上的树需要改变四对父子关系,BG DG BD AB,需要三个操作(BG BD AB)。
step 3:update一下当前点和各个父结点的各个值
inline void rotate(int x){
int fa=f[x]/*父亲*/,gf=f[fa]/*祖父*/,which=get(x);
ch[fa][which]=ch[x][which^];
f[ch[fa][which]]=fa;
ch[x][which^]=fa;
f[fa]=x;
f[x]=gf;
if(gf){
ch[gf][ch[gf][]==fa]=x;
}
upd(fa);/*先更新在下面的节点*/
upd(x);
}
【splay操作】
其实splay只是rotate的发展。伸展操作只是在不停的rotate,一直到达到目标状态。如果有一个确定的目标状态,也可以传两个参。此代码直接splay到根。
splay的过程中需要分类讨论,如果是三点一线的话(x,x的父亲,x的祖父)需要先rotate x的父亲,否则需要先rotate x本身(否则会形成单旋使平衡树失衡)
inline void splay(int x){
for(int fa;(fa=f[x]);rotate(x)){
// printf("fa[%d]=%d\n",fa,f[fa]);
if(f[fa]){
rotate(get(x)==get(fa)?fa:x);/*三点一线先rotate父亲*/
}
}
root=x;
}
【insert操作】
其实插入操作是比较简单的,和普通的二叉查找树基本一样。
step 1:如果root=0,即树为空的话,做一些特殊的处理,直接返回即可。
step 2:按照二叉查找树的方法一直向下找,其中:
如果遇到一个结点的关键字等于当前要插入的点的话,我们就等于把这个结点加了一个权值。因为在二叉搜索树中是不可能出现两个相同的点的。并且要将当前点和它父亲结点的各项值更新一下。做一下splay。
如果已经到了最底下了,那么就可以直接插入。整个树的大小要+1,新结点的左儿子右儿子(虽然是空)父亲还有各项值要一一对应。并且最后要做一下他父亲的update(做他自己的没有必要)。做一下splay。
inline void ins(int x){
if(!root){
sz++;
clear(sz);
root=sz;
cnt[sz]=siz[sz]=;
key[sz]=x;
return;
}
int cur=root,fa=;
while(){
if(x==key[cur]){
cnt[cur]++;
upd(cur);
upd(fa);
splay(cur);
return;
}
fa=cur;
cur=ch[fa][key[fa]<x];
if(!cur){
clear(++sz);
f[sz]=fa;
cnt[sz]=siz[sz]=;
ch[fa][key[fa]<x]=sz;
key[sz]=x;
upd(fa);
splay(sz);
return;
}
}
}
【find操作】查询x的排名
初始化:ans=0,当前点=root
和其它二叉搜索树的操作基本一样。但是区别是:
如果x比当前结点小,即应该向左子树寻找,ans不用改变(设想一下,走到整棵树的最左端最底端排名不就是1吗)。
如果x比当前结点大,即应该向右子树寻找,ans需要加上左子树的大小以及根的大小(这里的大小指的是权值)。
不要忘记了再splay一下
inline int find(int x){
int cur=root,ret=;
while(){
if(x<key[cur]){
cur=ch[cur][];
}else{
ret+=(ch[cur][]?siz[ch[cur][]]:);
if(key[cur]==x){
splay(cur);
return ret+;
}
ret+=cnt[cur];
cur=ch[cur][];
}
}
}
【findx操作】找到排名为x的点
初始化:当前点=root
和上面的思路基本相同:
如果当前点有左子树,并且x比左子树的大小小的话,即向左子树寻找;
否则,向右子树寻找:先判断是否有右子树,然后记录右子树的大小以及当前点的大小(都为权值),用于判断是否需要继续向右子树寻找。
inline int findx(int x){
int cur=root;
while(){
if(ch[cur][]&&x<=siz[ch[cur][]]){
cur=ch[cur][];
}else{
int tmp=(ch[cur][]?siz[ch[cur][]]:)+cnt[cur];
if(x<=tmp){
return key[cur];
}
x-=tmp;
cur=ch[cur][];
}
}
}
【求x的前驱(后继),前驱(后继)定义为小于(大于)x,且最大(最小)的数】
这类问题可以转化为将x插入,求出树上的前驱(后继),再将x删除的问题。
其中insert操作上文已经提到。
【pre/next操作】
这个操作十分的简单,只需要理解一点:在我们做insert操作之后做了一遍splay。这就意味着我们把x已经splay到根了。求x的前驱其实就是求x的左子树的最右边的一个结点,后继是求x的右子树的左边一个结点(想一想为什么?)
inline int pre(){
int cur=ch[root][];
while(ch[cur][]){
cur=ch[cur][];
}
return cur;
}
inline int nxt(){
int cur=ch[root][];
while(ch[cur][]){
cur=ch[cur][];
}
return cur;
}
【del操作】
删除操作是最后一个稍微有点麻烦的操作。
step 1:随便find一下x。目的是:将x旋转到根。
step 2:那么现在x就是根了。如果cnt[root]>1,即不只有一个x的话,直接-1返回。
step 3:如果root并没有孩子,就说名树上只有一个x而已,直接clear返回。
step 4:如果root只有左儿子或者右儿子,那么直接clear root,然后把唯一的儿子当作根就可以了(f赋0,root赋为唯一的儿子)
剩下的就是它有两个儿子的情况。
step 5:我们找到新根,也就是x的前驱(x左子树最大的一个点),将它旋转到根。然后将原来x的右子树接到新根的右子树上(注意这个操作需要改变父子关系)。这实际上就把x删除了。不要忘了update新根。
inline void del(int x){
find(x);
if(cnt[root]>){
cnt[root]--;
upd(root);
return;
}
if(!ch[root][]&&!ch[root][]){
clear(root);
root=;
return;
}
if(!ch[root][]){
int old=root;
root=ch[root][];
f[root]=;
clear(old);
return;
}
if(!ch[root][]){
int old=root;
root=ch[root][];
f[root]=;
clear(old);
return;
}
int old=root,p=pre();
splay(p);
ch[root][]=ch[old][];
f[ch[old][]]=root;
clear(old);
upd(root);
}
【总结】
平衡树的本质其实是二叉搜索树,所以很多操作是基于二叉搜索树的操作。
splay的本质是rotate,旋转其实只是为了保证二叉搜索树的平衡性。
所有的操作一定都满足二叉搜索树的性质,所有改变父子关系的操作一定要update。
关键是理解rotate,splay的原理以及每一个操作的原理。
转载自原文
【完整代码】
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF=1e9+,MAXN=1e5+;
int N;
int key[MAXN]/*关键字|值*/,cnt[MAXN]/*关键字数量*/,ch[MAXN][]/*儿子的下标*/,siz[MAXN],f[MAXN];
int root/*根*/,sz/*节点栈顶*/;/*splay的数组空间不能重复利用*/
inline void DEBUG(){
printf("root=%d siz=%d\n",root,sz);
for(int i=;i<=sz;i++){
printf("(idx=%d,cnt=%d,siz=%d,key=%d,f=%d,lc=%d,rc=%d)\n",i,cnt[i],siz[i],key[i],f[i],ch[i][],ch[i][]);
}
puts("-------------------------------------------------------");
}
inline void clear(int x){/*清除节点中的数据*/
key[x]=cnt[x]=ch[x][]=ch[x][]=siz[x]=f[x]=;
}
inline int get(int x){/*查询当前节点是否为右孩子*/
return x==ch[f[x]][];
}
inline void upd(int x){
if(x){
siz[x]=cnt[x];
if(ch[x][]){
siz[x]+=siz[ch[x][]];
}
if(ch[x][]){
siz[x]+=siz[ch[x][]];
}
}
}
inline void rotate(int x){
int fa=f[x]/*父亲下标*/,gf=f[fa]/*祖父*/,which=get(x);
ch[fa][which]=ch[x][which^];
f[ch[fa][which]]=fa;
ch[x][which^]=fa;
f[fa]=x;
f[x]=gf;
if(gf){
ch[gf][ch[gf][]==fa]=x;
}
upd(fa);/*先更新下方节点*/
upd(x);
}
inline void splay(int x){
for(int fa;(fa=f[x]);rotate(x)){
if(f[fa]){
rotate(get(x)==get(fa)?fa:x);/*三点一线先rotate父亲*/
}
}
root=x;
}
inline void ins(int x){
if(!root){
sz++;
clear(sz);
root=sz;
cnt[sz]=siz[sz]=;
key[sz]=x;
return;
}
int cur=root,fa=;
while(){
if(x==key[cur]){
cnt[cur]++;
upd(cur);
upd(fa);
splay(cur);
return;
}
fa=cur;
cur=ch[fa][key[fa]<x];
if(!cur){
clear(++sz);
f[sz]=fa;
cnt[sz]=siz[sz]=;
ch[fa][key[fa]<x]=sz;
key[sz]=x;
upd(fa);
splay(sz);
return;
}
}
}
inline int find(int x){
int cur=root,ret=;
while(){
if(x<key[cur]){
cur=ch[cur][];
}else{
ret+=(ch[cur][]?siz[ch[cur][]]:);
if(key[cur]==x){
splay(cur);
return ret+;
}
ret+=cnt[cur];
cur=ch[cur][];
}
}
}
inline int findx(int x){
int cur=root;
while(){
if(ch[cur][]&&x<=siz[ch[cur][]]){
cur=ch[cur][];
}else{
int tmp=(ch[cur][]?siz[ch[cur][]]:)+cnt[cur];
if(x<=tmp){
return key[cur];
}
x-=tmp;
cur=ch[cur][];
}
}
}
inline int pre(){
int cur=ch[root][];
while(ch[cur][]){
cur=ch[cur][];
}
return cur;
}
inline int nxt(){
int cur=ch[root][];
while(ch[cur][]){
cur=ch[cur][];
}
return cur;
}
inline void del(int x){
find(x);
if(cnt[root]>){
cnt[root]--;
upd(root);
return;
}
if(!ch[root][]&&!ch[root][]){
clear(root);
root=;
return;
}
if(!ch[root][]){
int old=root;
root=ch[root][];
f[root]=;
clear(old);
return;
}
if(!ch[root][]){
int old=root;
root=ch[root][];
f[root]=;
clear(old);
return;
}
int old=root,p=pre();
splay(p);
ch[root][]=ch[old][];
f[ch[old][]]=root;
clear(old);
upd(root);
}
int main(){
scanf("%d",&N);
for(int i=;i<=N;i++){
int ii,jj;
scanf("%d%d",&ii,&jj);
switch(ii){
case :{/*插入x数*/
ins(jj);
break;
}
case :{/*删除x数*/
del(jj);
break;
}
case :{/*查询x数的排名*/
printf("%d\n",find(jj));
break;
}
case :{/*查询排名为x的数*/
printf("%d\n",findx(jj));
break;
}
case :{/*求x的前驱*/
ins(jj);
printf("%d\n",key[pre()]);
del(jj);
break;
}
case :{/*求x的后继*/
ins(jj);
printf("%d\n",key[nxt()]);
del(jj);
break;
}
}
}
return ;
}
无注释代码
平衡树模板【splay的实现】的更多相关文章
- P3391 【模板】文艺平衡树(Splay)新板子
P3391 [模板]文艺平衡树(Splay) 题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转 ...
- fhq_treap || BZOJ 3223: Tyvj 1729 文艺平衡树 || Luogu P3391 【模板】文艺平衡树(Splay)
题面: [模板]文艺平衡树(Splay) 题解:无 代码: #include<cstdio> #include<cstring> #include<iostream> ...
- HDU 4006 The kth great number 优先队列、平衡树模板题(SBT)
The kth great number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Oth ...
- P3369 【模板】普通平衡树(splay)
P3369 [模板]普通平衡树 就是不用treap splay板子,好好背吧TAT #include<iostream> #include<cstdio> #include&l ...
- 洛谷 P3391 【模板】文艺平衡树(Splay)
题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1, ...
- 洛谷 P3391【模板】文艺平衡树(Splay)
题目背景 这是一道经典的Splay模板题--文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1, ...
- 文艺平衡树(splay模板)
题干:splay模板,要求维护区间反转. splay是一种码量小于treap,但支持排名,前驱后继等treap可求的东西,也支持区间反转的平衡树. 但是有两个坏处: 1.splay常数远远大于trea ...
- 洛谷——P3369 【模板】普通平衡树(splay)(基础splay,维护一些神奇的东东)
P3369 [模板]普通平衡树 平衡树大法好,蒟蒻(博主)最近正在收集高级数据结构的碎片,企图合成数据结构的元素之力来使自己的RP++... 您需要写一种数据结构(可参考题目标题),来维护一些数,其中 ...
- 洛谷P3391 【模板】文艺平衡树(Splay)(FHQ Treap)
题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1, ...
- luogu P3369 【模板】普通平衡树(splay)
嘟嘟嘟 突然觉得splay挺有意思,唯一不足的是这几天是一天一道,debug到崩溃. 做了几道平衡树基础题后,对这题有莫名的自信,还算愉快的敲完了代码后,发现样例都过不去,然后就陷入了无限的debug ...
随机推荐
- win7 设置双屏壁纸
http://dualmonitortool.sourceforge.net/ http://www.displayfusion.com/Features/Wallpaper/ 以第一个软件为例: 1 ...
- solr 如何实现精确查询
第一条和第三条不应该出现的. 解决办法
- [课后作业] 第001讲:我和Python的第一次亲密接触 | 课后测试题的答案
0. Python 是什么类型的语言? Python是脚本语言 脚本语言(Scripting language)是电脑编程语言,因此也能让开发者藉以编写出让电脑听命行事的程序.以简单的方式快速完成某些 ...
- android:两个应用之间怎样传值之activity
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/zjh171/article/details/37738579 两个应用之间怎样传值.事实上这个标题太 ...
- 什么是 Hexo?
Hexo 文档 欢迎使用 Hexo,本文档将帮助您快速上手.如果您在使用过程中遇到问题,请查看 问题解答 中的解答,或者在 GitHub.Google Group 上提问. 什么是 Hexo? H ...
- vue-router 的重定向-redirect
1. 我们主要在index.js重新设置路由的重新定向redirect参数 index.js import Vue from 'vue' import Router from 'vue-router' ...
- springboot+mybatis 非web项目构建
https://blog.csdn.net/wlittlefive/article/details/86157134 https://blog.csdn.net/ththcc/article/deta ...
- java 自加和短路问题 几个例子
x++可以看做一个独立的变量 如int a=x++;x的值先把他赋值给x++然后X++再赋值a,最后x再自加1 ++X int a=++ X 先自加1 x的值赋值给++x然后++x再赋值a ...
- 阿里云代码管理平台 Teambition Codeup(行云)亮相,为企业代码安全护航
2019杭州云栖大会企业协作与研发效能专场,企业协同平台Teambition负责人齐俊元正式发布阿里云自研的代码管理平台Teambition Codeup(行云),Codeup是一款企业级代码管理产品 ...
- 「题解」:[loj2763][JOI2013]现代豪宅
问题 A: 现代豪宅 时间限制: 1 Sec 内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...