acm数论之旅(转载) -- 快速幂
0和1都不是素数,也不是合数。
a的b次方怎么求
pow(a, b)是数学头文件math.h里面有的函数
可是它返回值是double类型,数据有精度误差
那就自己写for循环咯

LL pow(LL a, LL b){//a的b次方
LL ret = 1;
for(LL i = 1; i <= b; i ++){
ret *= a;
}
return ret;
}

完美
可是题目是b的范围是1 <= b <= 1e9(#°Д°)
超时,妥妥的。。。
看个例子
比如计算
2*2*2*2*2*2*2*2*2*2*2
可以这样算
原式=4*4*4*4*4*2
=8*8*4*2
=16*4*2
你看,相同的可以先合并,减少计算步骤
如果题目说数据很大,还需要求余,那么代码就可以这么写

1 LL pow_mod(LL a, LL b, ll MOD){//a的b次方
2 if(b == 0) return 1;
3 LL ret = pow_mod(a * a % MOD, b/2, Mod);
5 if(b & 1) ret = ret * a % MOD;
6 return ret;
7 }

这是递归写法
然后还有递推写法

1 LL pow_mod(LL a, LL b){//a的b次方
2 LL ret = 1;
3 while(b != 0){
4 if(b % 2 == 1){
5 ret = (ret * a) % MOD ;
6 }
7 a = (a * a ) % MOD ;
8 b /= 2;
9 }
10 return ret;
11 }

对于位运算熟的小盆友,还可以写成位运算形式,速度又快,又好理解,在加一个求余p,代码如下

1 LL pow_mod(LL a, LL b, LL p){//a的b次方求余p
2 LL ret = 1;
3 while(b){
4 if(b & 1) ret = (ret * a) % p;
5 a = (a * a) % p;
6 b >>= 1;
7 }
8 return ret;
9 }

有了快速幂,于是,快速乘诞生了

1 LL mul(LL a, LL b, LL p){//快速乘,计算a*b%p
2 LL ret = 0;
3 while(b){
4 if(b & 1) ret = (ret + a) % p;
5 a = (a + a) % p;
6 b >>= 1;
7 }
8 return ret;
9 }

https://vjudge.net/contest/240113#problem/J
解释
https://blog.csdn.net/rain722/article/details/64442335
https://blog.csdn.net/wanghandou/article/details/69666620
题意:
输入n^k,输出n^k的前3位与后3位.
思路:
最后的三位可以直接快速幂取余,但要注意不够要补前导0.
求前三位则需要一些数学知识对于给定的一个数n,它可以写成10^a,其中这个a为浮点数,则n^k=(10^a)^k=10^a*k=(10^x)*(10^y);
其中x,y分别是a*k的整数部分和小数部分对于t=n^k这个数,它的位数由(10^x)决定,它的位数上的值则有(10^y)决定,因此我们
要求t的前三位,只需要将10^y求出,再乘以100,就得到了它的前三位。
fmod(x,1)可以求出x的小数部分
acm数论之旅(转载) -- 快速幂的更多相关文章
- ACM数论之旅2---快速幂,快速求a^b((ノ`Д´)ノ做人就要坚持不懈)
a的b次方怎么求 pow(a, b)是数学头文件math.h里面有的函数 可是它返回值是double类型,数据有精度误差 那就自己写for循环咯 LL pow(LL a, LL b){//a的b次方 ...
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我) (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...
- acm数论之旅(转载)--素数
https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...
- ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))
数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a + b) % p = (a% ...
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
随机推荐
- 【游戏体验】Sift Heads World Act 1(暗杀行动1)
>>>点此处可试玩无敌版<<< 注意,本游戏含有少量暴力元素,13岁以下的儿童切勿尝试本款游戏 非常良心的火柴人游戏,值得一玩 个人测评 游戏性 8/10 音乐 9 ...
- moment of 2019.08.15
一件事,足以影响一个人的一生,准确的说,是两个人的人生轨迹. 人生中的遇见,有的是幸运,有的是不幸.2018.4的遇见,是我人生中的不幸,至少到目前为止,确实是不幸,从各个方面让我的生活不如以前. 如 ...
- ansible笔记(5):常用模块之命令类模块
1.command模块 它的作用是帮助我们在远程主机上执行命令. [注意]使用command模块在远程主机中执行命令时,不会经过远程主机的shell处理,在使用command模块时,如果需要执行的命令 ...
- linux deploy---旧手机变废为宝
前几天朋友送了我一部红米Note 1s,本来不想要,转念一想,不要白不要,就收了. 拿到之后我就想,这么一个1+8的手机能做什么呢? 翻遍了CSDN和简书,找到了一个性价比不错的方法:给旧手机装上一个 ...
- python调用c/c++ (入参出参为指针)
python可以使用ctypes库调用c++编译的so库函数 0x01 c/c++编译为so库文件 编译C文件 gcc -o libpycallfoo.so -shared -fPIC rsa.c ...
- 百炼OJ - 1003 - Hangover
题目链接 思路 求一个数列的前n项和(1/2, 1/3, ...., 1/n)大于所给数所需的项数. #include<stdio.h> int main() { float a; whi ...
- win7安装mysql数据库
1. 软件准备,以64位系统为例如果是32位的下载32位压缩包即可] https://dev.mysql.com/downloads/mysql/ 2.下载解压到本地,将解压路径的bin目录配置到环境 ...
- 【StarUML】组件图
架构设计中可视化地表达各个组件之间依赖关系以及组件的接口调用情况 1.元素 a.组件 b.接口 b1.组件暴露接口 暴露接口,需要先画一个接口 然后建立组件和接口的联系,这里是暴露接口,那么这个连线就 ...
- js获取用户当前地理位置(省、市、经纬度)
在很多情况下,我们需要用到定位功能,来获取用户当前位置.当前比较流行的定位API有腾讯地图.百度地图.高德地图.搜狗地图等等,在这里我使用的是腾讯地图定位API,根据用户IP获取用户当前位置,API返 ...
- go基础_defer
defer defer是go语言中的关键字 特点:FILO 作用:保障一些申请的资源最终得以释放 func main() { defer fmt.Println("line-1") ...