吴裕雄--天生自然 R语言数据可视化绘图(4)
par(ask=TRUE) # Basic scatterplot
library(ggplot2)
ggplot(data=mtcars, aes(x=wt, y=mpg)) +
geom_point() +
labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")
# Scatter plot with additional options
library(ggplot2)
ggplot(data=mtcars, aes(x=wt, y=mpg)) +
geom_point(pch=17, color="blue", size=2) +
geom_smooth(method="lm", color="red", linetype=2) +
labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")
# Scatter plot with faceting and grouping
data(mtcars)
mtcars$am <- factor(mtcars$am, levels=c(0,1),
labels=c("Automatic", "Manual"))
mtcars$vs <- factor(mtcars$vs, levels=c(0,1),
labels=c("V-Engine", "Straight Engine"))
mtcars$cyl <- factor(mtcars$cyl) library(ggplot2)
ggplot(data=mtcars, aes(x=hp, y=mpg,
shape=cyl, color=cyl)) +
geom_point(size=3) +
facet_grid(am~vs) +
labs(title="Automobile Data by Engine Type",
x="Horsepower", y="Miles Per Gallon")
# Using geoms
data(singer, package="lattice")
ggplot(singer, aes(x=height)) + geom_histogram()
ggplot(singer, aes(x=voice.part, y=height)) + geom_boxplot()
data(Salaries, package="car")
library(ggplot2)
ggplot(Salaries, aes(x=rank, y=salary)) +
geom_boxplot(fill="cornflowerblue",
color="black", notch=TRUE)+
geom_point(position="jitter", color="blue", alpha=.5)+
geom_rug(side="l", color="black")
# Grouping
library(ggplot2)
data(singer, package="lattice")
ggplot(singer, aes(x=voice.part, y=height)) +
geom_violin(fill="lightblue") +
geom_boxplot(fill="lightgreen", width=.2)
data(Salaries, package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=salary, fill=rank)) +
geom_density(alpha=.3)
ggplot(Salaries, aes(x=yrs.since.phd, y=salary, color=rank,
shape=sex)) + geom_point()
ggplot(Salaries, aes(x=rank, fill=sex)) +
geom_bar(position="stack") + labs(title='position="stack"')
ggplot(Salaries, aes(x=rank, fill=sex)) +
geom_bar(position="dodge") + labs(title='position="dodge"')
ggplot(Salaries, aes(x=rank, fill=sex)) +
geom_bar(position="fill") + labs(title='position="fill"')
# Placing options
ggplot(Salaries, aes(x=rank, fill=sex))+ geom_bar()
ggplot(Salaries, aes(x=rank)) + geom_bar(fill="red")
ggplot(Salaries, aes(x=rank, fill="red")) + geom_bar()
# Faceting
data(singer, package="lattice")
library(ggplot2)
ggplot(data=singer, aes(x=height)) +
geom_histogram() +
facet_wrap(~voice.part, nrow=4)
library(ggplot2)
ggplot(Salaries, aes(x=yrs.since.phd, y=salary, color=rank,
shape=rank)) + geom_point() + facet_grid(.~sex)
data(singer, package="lattice")
library(ggplot2)
ggplot(data=singer, aes(x=height, fill=voice.part)) +
geom_density() +
facet_grid(voice.part~.)
# Adding smoothed lines
data(Salaries, package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) +
geom_smooth() + geom_point()
ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary,
linetype=sex, shape=sex, color=sex)) +
geom_smooth(method=lm, formula=y~poly(x,2),
se=FALSE, size=1) +
geom_point(size=2)
# Modifying axes
data(Salaries,package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=rank, y=salary, fill=sex)) +
geom_boxplot() +
scale_x_discrete(breaks=c("AsstProf", "AssocProf", "Prof"),
labels=c("Assistant\nProfessor",
"Associate\nProfessor",
"Full\nProfessor")) +
scale_y_continuous(breaks=c(50000, 100000, 150000, 200000),
labels=c("$50K", "$100K", "$150K", "$200K")) +
labs(title="Faculty Salary by Rank and Sex", x="", y="")
# Legends
data(Salaries,package="car")
library(ggplot2)
ggplot(data=Salaries, aes(x=rank, y=salary, fill=sex)) +
geom_boxplot() +
scale_x_discrete(breaks=c("AsstProf", "AssocProf", "Prof"),
labels=c("Assistant\nProfessor",
"Associate\nProfessor",
"Full\nProfessor")) +
scale_y_continuous(breaks=c(50000, 100000, 150000, 200000),
labels=c("$50K", "$100K", "$150K", "$200K")) +
labs(title="Faculty Salary by Rank and Gender",
x="", y="", fill="Gender") +
theme(legend.position=c(.1,.8))
# Scales
ggplot(mtcars, aes(x=wt, y=mpg, size=disp)) +
geom_point(shape=21, color="black", fill="cornsilk") +
labs(x="Weight", y="Miles Per Gallon",
title="Bubble Chart", size="Engine\nDisplacement")
data(Salaries, package="car")
ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary, color=rank)) +
scale_color_manual(values=c("orange", "olivedrab", "navy")) +
geom_point(size=2)
ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary, color=rank)) +
scale_color_brewer(palette="Set1") + geom_point(size=2)
library(RColorBrewer)
display.brewer.all()
# Themes
data(Salaries, package="car")
library(ggplot2)
mytheme <- theme(plot.title=element_text(face="bold.italic",
size="", color="brown"),
axis.title=element_text(face="bold.italic",
size=10, color="brown"),
axis.text=element_text(face="bold", size=9,
color="darkblue"),
panel.background=element_rect(fill="white",
color="darkblue"),
panel.grid.major.y=element_line(color="grey",
linetype=1),
panel.grid.minor.y=element_line(color="grey",
linetype=2),
panel.grid.minor.x=element_blank(),
legend.position="top") ggplot(Salaries, aes(x=rank, y=salary, fill=sex)) +
geom_boxplot() +
labs(title="Salary by Rank and Sex",
x="Rank", y="Salary") +
mytheme
# Multiple graphs per page
data(Salaries, package="car")
library(ggplot2)
p1 <- ggplot(data=Salaries, aes(x=rank)) + geom_bar()
p2 <- ggplot(data=Salaries, aes(x=sex)) + geom_bar()
p3 <- ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) + geom_point() library(gridExtra)
grid.arrange(p1, p2, p3, ncol=3) # Saving graphs
ggplot(data=mtcars, aes(x=mpg)) + geom_histogram()
ggsave(file="E:\\mygraph.pdf")
吴裕雄--天生自然 R语言数据可视化绘图(4)的更多相关文章
- 吴裕雄--天生自然 R语言数据可视化绘图(3)
par(ask=TRUE) opar <- par(no.readonly=TRUE) # record current settings # Listing 11.1 - A scatter ...
- 吴裕雄--天生自然 R语言数据可视化绘图(2)
par(ask=TRUE) opar <- par(no.readonly=TRUE) # save original parameter settings library(vcd) count ...
- 吴裕雄--天生自然 R语言数据可视化绘图(1)
par(ask=TRUE) opar <- par(no.readonly=TRUE) # make a copy of current settings attach(mtcars) # be ...
- 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置
下载R语言和开发工具RStudio安装包 先安装R
- 吴裕雄--天生自然 R语言开发学习:数据集和数据结构
数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...
- 吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...
- 吴裕雄--天生自然 R语言开发学习:处理缺失数据的高级方法(续一)
#-----------------------------------# # R in Action (2nd ed): Chapter 18 # # Advanced methods for mi ...
- 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用
假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...
- 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据
R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...
随机推荐
- 有基因ID或者基因名,如何拿到对应的KEGG通路图?
1.https://www.kegg.jp/kegg/tool/map_pathway2.html 2.如下图,筛选出基因所在的通路,并标上不同的颜色. 3.结果页面如下,有些基因会找不到对应的通路, ...
- Docker应用部署实录(包含完善Docker安装步骤)
Docker应用部署实录(包含完善Docker安装步骤) 前言 首先说一下这篇文章的来源.我之前接手的一个IOT项目,需要安装多个中控服务器.中控服务器需要安装RabbitMQ,Mysql,多个服务, ...
- oracle11g和12c区别
11g和12c 1.12c使用更为强大的sql执行与优化算法 2.oracle在12c完全使用云和可插拔数据库概念 3.oracle 12c的RAC使用flex(让rg直接化) 模式,让rg管理更加细 ...
- @ComponentScan注解,basePackages参数通配符
@ComponentScan(basePackages = "com.ofo.test")当basePackages的直使用通配符,使用**,不能使用*.引用:https://bl ...
- Web框架之Gin介绍及使用
Gin是一个用Go语言编写的web框架.它是一个类似于martini但拥有更好性能的API框架, 由于使用了httprouter,速度提高了近40倍. 如果你是性能和高效的追求者, 你会爱上Gin. ...
- ARTS Week 9
Dec 23, 2019 ~ Dec 29, 2019 Algorithm Problem 69 Sqrt(x) 实现求解平方根函数Sqrt(x) 题目链接 题目描述:给定一个非负数x,求解该数字的平 ...
- 一个"/"引发的惨案
今天行云流水写了一个接口,正想着写完就睡觉了,结果访问的时候一直报错404,找不到路径,我反复检查了好久,确定路径名字没写错,百思不得其解,瞬间有想砸电脑的冲动,于是准备洗洗睡了,明天再搞 洗玩脚回到 ...
- Python3(十二) Pythonic与Python杂记
一.用字典映射代替switch case语句 if/else可以代替switch但是非常不合适. 用字典代替switch: day = 5 switcher = { 0:'Sunday', 1:'Mo ...
- vue学习(一)项目搭建
首先需要配置node和npm,如果没有安装的话,百度一下安装教程. 如果感觉npm下载速度慢,可以使用淘宝镜像cnpm,链接地址: http://npm.taobao.org/ 安装cnpm npm ...
- 《自拍教程14》Linux的常用命令
Linux操作系统, 包括我们大家熟知的Android, Ubuntu, Centos, Red Hat, UOS等. 这些常用命令先大概了解下,当然能熟练掌握并运用到实际工作中那最好不过了. 后续技 ...