R 中清洗数据

为了更好的用data

找数据和处理数据都是数据挖据中比较重要的步骤

常见三种查看数据的函数

# View the first 6 rows of data
head(weather) # View the last 6 rows of data
tail(weather) # View a condensed summary of the data
str(weather)

Exploring raw data

> # Check the class of bmi
> class(bmi)
[1] "data.frame"
>
> # Check the dimensions of bmi
> dim(bmi)
[1] 199 30
>
> # View the column names of bmi
> names(bmi)
[1] "Country" "Y1980" "Y1981" "Y1982" "Y1983" "Y1984" "Y1985"
[8] "Y1986" "Y1987" "Y1988" "Y1989" "Y1990" "Y1991" "Y1992"
[15] "Y1993" "Y1994" "Y1995" "Y1996" "Y1997" "Y1998" "Y1999"
[22] "Y2000" "Y2001" "Y2002" "Y2003" "Y2004" "Y2005" "Y2006"
[29] "Y2007" "Y2008"

使用dplyr包里面的glimpse函数查看数据结构

> # Load dplyr
> library(dplyr) Attaching package: 'dplyr'
The following objects are masked from 'package:stats': filter, lag
The following objects are masked from 'package:base': intersect, setdiff, setequal, union
>
> # Check the structure of bmi, the dplyr way
>
> glimpse(bmi)
Observations: 199
Variables: 30
$ Country <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola", "...
$ Y1980 <dbl> 21.48678, 25.22533, 22.25703, 25.66652, 20.94876, 23.31424,...
$ Y1981 <dbl> 21.46552, 25.23981, 22.34745, 25.70868, 20.94371, 23.39054,...
$ Y1982 <dbl> 21.45145, 25.25636, 22.43647, 25.74681, 20.93754, 23.45883,...
$ Y1983 <dbl> 21.43822, 25.27176, 22.52105, 25.78250, 20.93187, 23.53735,...
$ Y1984 <dbl> 21.42734, 25.27901, 22.60633, 25.81874, 20.93569, 23.63584,...
$ Y1985 <dbl> 21.41222, 25.28669, 22.69501, 25.85236, 20.94857, 23.73109,...
$ Y1986 <dbl> 21.40132, 25.29451, 22.76979, 25.89089, 20.96030, 23.83449,...
$ Y1987 <dbl> 21.37679, 25.30217, 22.84096, 25.93414, 20.98025, 23.93649,...
$ Y1988 <dbl> 21.34018, 25.30450, 22.90644, 25.98477, 21.01375, 24.05364,...
$ Y1989 <dbl> 21.29845, 25.31944, 22.97931, 26.04450, 21.05269, 24.16347,...
$ Y1990 <dbl> 21.24818, 25.32357, 23.04600, 26.10936, 21.09007, 24.26782,...
$ Y1991 <dbl> 21.20269, 25.28452, 23.11333, 26.17912, 21.12136, 24.36568,...
$ Y1992 <dbl> 21.14238, 25.23077, 23.18776, 26.24017, 21.14987, 24.45644,...
$ Y1993 <dbl> 21.06376, 25.21192, 23.25764, 26.30356, 21.13938, 24.54096,...
$ Y1994 <dbl> 20.97987, 25.22115, 23.32273, 26.36793, 21.14186, 24.60945,...
$ Y1995 <dbl> 20.91132, 25.25874, 23.39526, 26.43569, 21.16022, 24.66461,...
$ Y1996 <dbl> 20.85155, 25.31097, 23.46811, 26.50769, 21.19076, 24.72544,...
$ Y1997 <dbl> 20.81307, 25.33988, 23.54160, 26.58255, 21.22621, 24.78714,...
$ Y1998 <dbl> 20.78591, 25.39116, 23.61592, 26.66337, 21.27082, 24.84936,...
$ Y1999 <dbl> 20.75469, 25.46555, 23.69486, 26.75078, 21.31954, 24.91721,...
$ Y2000 <dbl> 20.69521, 25.55835, 23.77659, 26.83179, 21.37480, 24.99158,...
$ Y2001 <dbl> 20.62643, 25.66701, 23.86256, 26.92373, 21.43664, 25.05857,...
$ Y2002 <dbl> 20.59848, 25.77167, 23.95294, 27.02525, 21.51765, 25.13039,...
$ Y2003 <dbl> 20.58706, 25.87274, 24.05243, 27.12481, 21.59924, 25.20713,...
$ Y2004 <dbl> 20.57759, 25.98136, 24.15957, 27.23107, 21.69218, 25.29898,...
$ Y2005 <dbl> 20.58084, 26.08939, 24.27001, 27.32827, 21.80564, 25.39965,...
$ Y2006 <dbl> 20.58749, 26.20867, 24.38270, 27.43588, 21.93881, 25.51382,...
$ Y2007 <dbl> 20.60246, 26.32753, 24.48846, 27.53363, 22.08962, 25.64247,...
$ Y2008 <dbl> 20.62058, 26.44657, 24.59620, 27.63048, 22.25083, 25.76602,...
> # View a summary of bmi
> summary(bmi)
Country Y1980 Y1981 Y1982
Length:199 Min. :19.01 Min. :19.04 Min. :19.07
Class :character 1st Qu.:21.27 1st Qu.:21.31 1st Qu.:21.36
Mode :character Median :23.31 Median :23.39 Median :23.46
Mean :23.15 Mean :23.21 Mean :23.26
3rd Qu.:24.82 3rd Qu.:24.89 3rd Qu.:24.94
Max. :28.12 Max. :28.36 Max. :28.58
Y1983 Y1984 Y1985 Y1986
Min. :19.10 Min. :19.13 Min. :19.16 Min. :19.20
1st Qu.:21.42 1st Qu.:21.45 1st Qu.:21.47 1st Qu.:21.49
Median :23.57 Median :23.64 Median :23.73 Median :23.82
Mean :23.32 Mean :23.37 Mean :23.42 Mean :23.48
3rd Qu.:25.02 3rd Qu.:25.06 3rd Qu.:25.11 3rd Qu.:25.20
Max. :28.82 Max. :29.05 Max. :29.28 Max. :29.52
Y1987 Y1988 Y1989 Y1990
Min. :19.23 Min. :19.27 Min. :19.31 Min. :19.35
1st Qu.:21.50 1st Qu.:21.52 1st Qu.:21.55 1st Qu.:21.57
Median :23.87 Median :23.93 Median :24.03 Median :24.14
Mean :23.53 Mean :23.59 Mean :23.65 Mean :23.71
3rd Qu.:25.27 3rd Qu.:25.34 3rd Qu.:25.37 3rd Qu.:25.39
Max. :29.75 Max. :29.98 Max. :30.20 Max. :30.42
Y1991 Y1992 Y1993 Y1994
Min. :19.40 Min. :19.45 Min. :19.51 Min. :19.59
1st Qu.:21.60 1st Qu.:21.65 1st Qu.:21.74 1st Qu.:21.76
Median :24.20 Median :24.19 Median :24.27 Median :24.36
Mean :23.76 Mean :23.82 Mean :23.88 Mean :23.94
3rd Qu.:25.42 3rd Qu.:25.48 3rd Qu.:25.54 3rd Qu.:25.62
Max. :30.64 Max. :30.85 Max. :31.04 Max. :31.23
Y1995 Y1996 Y1997 Y1998
Min. :19.67 Min. :19.71 Min. :19.74 Min. :19.77
1st Qu.:21.83 1st Qu.:21.89 1st Qu.:21.94 1st Qu.:22.00
Median :24.41 Median :24.42 Median :24.50 Median :24.49
Mean :24.00 Mean :24.07 Mean :24.14 Mean :24.21
3rd Qu.:25.70 3rd Qu.:25.78 3rd Qu.:25.85 3rd Qu.:25.94
Max. :31.41 Max. :31.59 Max. :31.77 Max. :31.95
Y1999 Y2000 Y2001 Y2002
Min. :19.80 Min. :19.83 Min. :19.86 Min. :19.84
1st Qu.:22.04 1st Qu.:22.12 1st Qu.:22.22 1st Qu.:22.29
Median :24.61 Median :24.66 Median :24.73 Median :24.81
Mean :24.29 Mean :24.36 Mean :24.44 Mean :24.52
3rd Qu.:26.01 3rd Qu.:26.09 3rd Qu.:26.19 3rd Qu.:26.30
Max. :32.13 Max. :32.32 Max. :32.51 Max. :32.70
Y2003 Y2004 Y2005 Y2006
Min. :19.81 Min. :19.79 Min. :19.79 Min. :19.80
1st Qu.:22.37 1st Qu.:22.45 1st Qu.:22.54 1st Qu.:22.63
Median :24.89 Median :25.00 Median :25.11 Median :25.24
Mean :24.61 Mean :24.70 Mean :24.79 Mean :24.89
3rd Qu.:26.38 3rd Qu.:26.47 3rd Qu.:26.53 3rd Qu.:26.59
Max. :32.90 Max. :33.10 Max. :33.30 Max. :33.49
Y2007 Y2008
Min. :19.83 Min. :19.87
1st Qu.:22.73 1st Qu.:22.83
Median :25.36 Median :25.50
Mean :24.99 Mean :25.10
3rd Qu.:26.66 3rd Qu.:26.82
Max. :33.69 Max. :33.90

$提取指定元素

# Histogram of BMIs from 2008
hist(bmi$Y2008)
# Scatter plot comparing BMIs from 1980 to those from 2008
plot(bmi$Y1980, bmi$Y2008)

Introduction to tidyr

关于tidyr的详细注释及函数参数说明见tidyr

gather()

gather函数类似于Excel(2016起)中的数据透视的功能,能把一个变量名含有变量的二维表转换成一个规范的二维表(类似数据库中关系的那种表,具体看例子)

参数说明gather函数解析

第一个参数放的是原数据,数据类型要是一个数据框;

下面传一个键值对,名字是自己起的,这两个值是做新转换成的二维表的表头,即两个变量名;

第四个是选中要转置的列,这个参数不写的话就默认全部转置;

stu<-data.frame(grade=c("A","B","C","D","E"), female=c(5, 4, 1, 2, 3), male=c(1, 2, 3, 4, 5))

gather(stu, gender, count,-grade)

spread()

spread用来扩展表,把某一列的值(键值对)分开拆成多列。

# Apply spread() to bmi_long
bmi_wide <- spread(bmi_long, year, bmi_val) # View the head of bmi_wide
head(bmi_wide)
Country Y1980 Y1981 Y1982 Y1983 Y1984 Y1985
1 Afghanistan 21.48678 21.46552 21.45145 21.43822 21.42734 21.41222
2 Albania 25.22533 25.23981 25.25636 25.27176 25.27901 25.28669
3 Algeria 22.25703 22.34745 22.43647 22.52105 22.60633 22.69501
4 Andorra 25.66652 25.70868 25.74681 25.78250 25.81874 25.85236
5 Angola 20.94876 20.94371 20.93754 20.93187 20.93569 20.94857
6 Antigua and Barbuda 23.31424 23.39054 23.45883 23.53735 23.63584 23.73109
Y1986 Y1987 Y1988 Y1989 Y1990 Y1991 Y1992 Y1993
1 21.40132 21.37679 21.34018 21.29845 21.24818 21.20269 21.14238 21.06376
2 25.29451 25.30217 25.30450 25.31944 25.32357 25.28452 25.23077 25.21192
3 22.76979 22.84096 22.90644 22.97931 23.04600 23.11333 23.18776 23.25764
4 25.89089 25.93414 25.98477 26.04450 26.10936 26.17912 26.24017 26.30356
5 20.96030 20.98025 21.01375 21.05269 21.09007 21.12136 21.14987 21.13938
6 23.83449 23.93649 24.05364 24.16347 24.26782 24.36568 24.45644 24.54096
Y1994 Y1995 Y1996 Y1997 Y1998 Y1999 Y2000 Y2001
1 20.97987 20.91132 20.85155 20.81307 20.78591 20.75469 20.69521 20.62643
2 25.22115 25.25874 25.31097 25.33988 25.39116 25.46555 25.55835 25.66701
3 23.32273 23.39526 23.46811 23.54160 23.61592 23.69486 23.77659 23.86256
4 26.36793 26.43569 26.50769 26.58255 26.66337 26.75078 26.83179 26.92373
5 21.14186 21.16022 21.19076 21.22621 21.27082 21.31954 21.37480 21.43664
6 24.60945 24.66461 24.72544 24.78714 24.84936 24.91721 24.99158 25.05857
Y2002 Y2003 Y2004 Y2005 Y2006 Y2007 Y2008
1 20.59848 20.58706 20.57759 20.58084 20.58749 20.60246 20.62058
2 25.77167 25.87274 25.98136 26.08939 26.20867 26.32753 26.44657
3 23.95294 24.05243 24.15957 24.27001 24.38270 24.48846 24.59620
4 27.02525 27.12481 27.23107 27.32827 27.43588 27.53363 27.63048
5 21.51765 21.59924 21.69218 21.80564 21.93881 22.08962 22.25083
6 25.13039 25.20713 25.29898 25.39965 25.51382 25.64247 25.76602

spreate()

The separate() function allows you to separate one column into multiple columns. Unless you tell it otherwise, it will attempt to separate on any character that is not a letter or number. You can also specify a specific separator using the sep argument.

# View the head of census_long3
head(census_long3) # Separate the yr_month column into two
census_long4 <- separate(census_long3, yr_month, c("year", "month")) # View the first 6 rows of the result
head(census_long4)

一个简单的例子

下面的这个例子就是参数稍微复杂一点


> # Apply separate() to bmi_cc
> bmi_cc_clean <- separate(bmi_cc, col = Country_ISO, into = c("Country", "ISO"), sep = "/")
>
> # Print the head of the result
> head(bmi_cc_clean)
Country ISO year bmi_val
1 Afghanistan AF Y1980 21.48678
2 Albania AL Y1980 25.22533
3 Algeria DZ Y1980 22.25703
4 Andorra AD Y1980 25.66652
5 Angola AO Y1980 20.94876
6 Antigua and Barbuda AG Y1980 23.31424

unite()

The opposite of separate() is unite(), which takes multiple columns and pastes them together. By default, the contents of the columns will be separated by underscores in the new column, but this behavior can be altered via the sep argument。datacamp

> # Apply unite() to bmi_cc_clean
> bmi_cc <- unite(bmi_cc_clean,Country_ISO,Country ,ISO, sep = "-")
>
> # View the head of the result
> head(bmi_cc )
Country_ISO year bmi_val
1 Afghanistan-AF Y1980 21.48678
2 Albania-AL Y1980 25.22533
3 Algeria-DZ Y1980 22.25703
4 Andorra-AD Y1980 25.66652
5 Angola-AO Y1980 20.94876
6 Antigua and Barbuda-AG Y1980 23.31424

常见数据类型

# Make this evaluate to "character"
class("TRUE") # Make this evaluate to "numeric"
class(8484.00) # Make this evaluate to "integer"
class(99L) # Make this evaluate to "factor"
class(factor("factor")) # Make this evaluate to "logical"
class(FALSE)

lubridate

处理两种类型的数据

1.处理时点数据(time instants)

2.处理时段数据(time spans)

  • ymd("...", tz=NULL) / dmy() / mdy() :处理不同顺序的日期数据,使之按年月日的形式排列
  • dym() / ydm()
  • hms("...", roll=FALSE) / hm() / ms() :处理不同顺序的时间数据
  • ymd_hms("...", tz="UTC", locale=Sys.getlocale("LC_TIME"), truncated = 0) / ymd_hm / ymd_h :处理不同顺序的日期时间数据
  • dmy_hms /dmy_hm /dmy_h
  • mdy_hms / mdy_hm / mdy_h

tz ="UTC" :世界标准时间

# Load the lubridate package
> library(lubridate) Attaching package: 'lubridate'
The following object is masked from 'package:base': date
>
> # Parse as date
> dmy("17 Sep 2015")
[1] "2015-09-17"
>
> # Parse as date and time (with no seconds!)
> mdy_hm("July 15, 2012 12:56")
[1] "2012-07-15 12:56:00 UTC"
>
> # Coerce dob to a date (with no time)
> students2$dob <- ymd(students2$dob)
>
> # Coerce nurse_visit to a date and time
> students2$nurse_visit <- ymd_hms(students2$nurse_visit)
>
> # Look at students2 once more with str()
> str(students2)
'data.frame': 395 obs. of 33 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ school : chr "GP" "GP" "GP" "GP" ...
$ sex : chr "F" "F" "F" "F" ...
$ dob : Date, format: "2000-06-05" "1999-11-25" ...
$ address : chr "U" "U" "U" "U" ...
$ famsize : chr "GT3" "GT3" "LE3" "GT3" ...
$ Pstatus : chr "A" "T" "T" "T" ...
$ Medu : int 4 1 1 4 3 4 2 4 3 3 ...
$ Fedu : int 4 1 1 2 3 3 2 4 2 4 ...
$ Mjob : chr "at_home" "at_home" "at_home" "health" ...
$ Fjob : chr "teacher" "other" "other" "services" ...
$ reason : chr "course" "course" "other" "home" ...
$ guardian : chr "mother" "father" "mother" "mother" ...
$ traveltime : int 2 1 1 1 1 1 1 2 1 1 ...
$ studytime : int 2 2 2 3 2 2 2 2 2 2 ...
$ failures : int 0 0 3 0 0 0 0 0 0 0 ...
$ schoolsup : chr "yes" "no" "yes" "no" ...
$ famsup : chr "no" "yes" "no" "yes" ...
$ paid : chr "no" "no" "yes" "yes" ...
$ activities : chr "no" "no" "no" "yes" ...
$ nursery : chr "yes" "no" "yes" "yes" ...
$ higher : chr "yes" "yes" "yes" "yes" ...
$ internet : chr "no" "yes" "yes" "yes" ...
$ romantic : chr "no" "no" "no" "yes" ...
$ famrel : int 4 5 4 3 4 5 4 4 4 5 ...
$ freetime : int 3 3 3 2 3 4 4 1 2 5 ...
$ goout : int 4 3 2 2 2 2 4 4 2 1 ...
$ Dalc : int 1 1 2 1 1 1 1 1 1 1 ...
$ Walc : int 1 1 3 1 2 2 1 1 1 1 ...
$ health : int 3 3 3 5 5 5 3 1 1 5 ...
$ nurse_visit: POSIXct, format: "2014-04-10 14:59:54" "2015-03-12 14:59:54" ...
$ absences : int 6 4 10 2 4 10 0 6 0 0 ...
$ Grades : chr "5/6/6" "5/5/6" "7/8/10" "15/14/15" ...

stringr包

Trimming and padding strings

str_trim()

he str_trim() function from stringr makes it easy to do this while leaving intact the part of the string that you actually want.

str_pad()

> library(stringr)
>
> # Trim all leading and trailing whitespace
> str_trim(c(" Filip ", "Nick ", " Jonathan"))
[1] "Filip" "Nick" "Jonathan"
>
> # Pad these strings with leading zeros
> str_pad(c("23485W", "8823453Q", "994Z"), width = 9, side = "left", pad = "0")
[1] "00023485W" "08823453Q" "00000994Z"

MISSING data

缺失值

# Call is.na() on the full social_df to spot all NAs 判断哪个位置的是缺失值
is.na(social_df) # Use the any() function to ask whether there are any NAs in the data 判断是否存在缺失值
anyNA(social_df)
# View a summary() of the dataset 查看数据结构
summary(social_df) # Call table() on the status column 表格化输出一列
table(social_df$status)
# Replace all empty strings in status with NA
social_df$status[social_df$status == ""] <- NA # Print social_df to the console
social_df # Use complete.cases() to see which rows have no missing values
complete.cases(social_df) # Use na.omit() to remove all rows with any missing values
na.omit(social_df)

Outliers and obvious errors

# Review distributions for all variables
summary(weather6) # Find row with Max.Humidity of 1000
ind <- which(weather6$Max.Humidity==1000) # Look at the data for that day
weather6[ind, ] # Change 1000 to 100
weather6$Max.Humidity[ind] <-100

reference

Cleaning Data in R的更多相关文章

  1. (转) 6 ways of mean-centering data in R

    6 ways of mean-centering data in R 怎么scale我们的数据? 还是要看我们自己数据的特征. 如何找到我们数据的中心? Cluster analysis with K ...

  2. 学习笔记(四): Representation:Feature Engineering/Qualities of Good Features/Cleaning Data/Feature Sets

    目录 Representation Feature Engineering Mapping Raw Data to Features Mapping numeric values Mapping ca ...

  3. Importing data in R 1

    目录 Importing data in R 学习笔记1 flat files:CSV txt文件 packages:readr read_csv() read_tsv read_delim() da ...

  4. Analyzing Microarray Data with R

    1) 熟悉CEL file 从 NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24460)下载GSE24460. 将得到 ...

  5. R0—New packages for reading data into R — fast

    小伙伴儿们有福啦,2015年4月10日,Hadley Wickham大牛(开发了著名的ggplots包和plyr包等)和RStudio小组又出新作啦,新作品readr包和readxl包分别用于R读取t ...

  6. Visualization data using R and bioconductor.--NCBI

  7. data cleaning

    Cleaning data in Python   Table of Contents Set up environments Data analysis packages in Python Cle ...

  8. Managing Spark data handles in R

    When working with big data with R (say, using Spark and sparklyr) we have found it very convenient t ...

  9. An Introduction to Stock Market Data Analysis with R (Part 1)

    Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...

随机推荐

  1. 【redisson】分布式锁与数据库事务

    场景: 用户消耗积分兑换商品. user_point(用户积分): id point 1 2000 point_item(积分商品): id point num 101 200 10 传统的contr ...

  2. jsp的九大内置对象+四大作用域

    1.request是httpServletRequest的对象,代表发送的请求信息 2.response是httpServletResponse的对象,代表响应请求返回的信息 3.session会话是 ...

  3. luogu P3369 【模板】普通平衡树

    ————————————————版权声明:本文为CSDN博主「ModestCoder_」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https:// ...

  4. spss——定义变量

    在变量视图 1,名称:必须以文字.字母.@ 这三类命名, 不能以数字.特殊字符.spss保留字等命名 2,类型:数字.逗号.点.字符串等,(字符数) 3,宽度 4,小数位数 5,标签:对名称进一步解释 ...

  5. Percona Xtrabackup 备份工具

    生成备份 $ xtrabackup --backup --target-dir=/data/backups/ 注:--target-dir可以放在my.cnf配置文件中.如果指定的目录不存在,xtra ...

  6. ihandy2019笔记编程真题

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  7. 开启WIndows10 未经身份验证的来宾访问策略以及SMB1

    打开记事本编辑保存至.vbs 以管理员身份运行 Set obj = createobject("wscript.shell") obj.run ("reg add HKL ...

  8. JAVA全套资料含视频源码(持续更新~)

    本文旨在免费分享我所搜集到的Java学习资源,所有资源都是通过正规渠道获取,不存在侵权.现在整理分享给有所需要的人. 希望对你们有所帮助!有新增资源我会更新的~大家有好的资源也希望分享,大家互帮互助共 ...

  9. Django---Django连接Mysql数据库

    前面介绍了Django平台的数据交互,这些数据都是在本地存放着,修改内容或者重新启动服务,数据就消失了,如果我们把数据存放在数据库中,不就保存了吗? Django数据库 Django中自带的也有数据库 ...

  10. Mybatis Dao接口与Xml文件不匹配的问题:Invalid bound statement (not found)

    <!-- 如果不添加此节点mybatis的mapper.xml文件都会被漏掉. --> <resources> <resource> <directory&g ...