Time Limit: 3000MS Memory Limit: 30000K

Total Submissions: 3943 Accepted: 1414

Description

A very big corporation is developing its corporative network. In the beginning each of the N enterprises of the corporation, numerated from 1 to N, organized its own computing and telecommunication center. Soon, for amelioration of the services, the corporation started to collect some enterprises in clusters, each of them served by a single computing and telecommunication center as follow. The corporation chose one of the existing centers I (serving the cluster A) and one of the enterprises J in some other cluster B (not necessarily the center) and link them with telecommunication line. The length of the line between the enterprises I and J is |I – J|(mod 1000).In such a way the two old clusters are joined in a new cluster, served by the center of the old cluster B. Unfortunately after each join the sum of the lengths of the lines linking an enterprise to its serving center could be changed and the end users would like to know what is the new length. Write a program to keep trace of the changes in the organization of the network that is able in each moment to answer the questions of the users.

Input

Your program has to be ready to solve more than one test case. The first line of the input will contains only the number T of the test cases. Each test will start with the number N of enterprises (5<=N<=20000). Then some number of lines (no more than 200000) will follow with one of the commands:

E I – asking the length of the path from the enterprise I to its serving center in the moment;

I I J – informing that the serving center I is linked to the enterprise J.

The test case finishes with a line containing the word O. The I commands are less than N.

Output

The output should contain as many lines as the number of E commands in all test cases with a single number each – the asked sum of length of lines connecting the corresponding enterprise with its serving center.

Sample Input

1

4

E 3

I 3 1

E 3

I 1 2

E 3

I 2 4

E 3

O

Sample Output

0

2

3

5

Source

Southeastern Europe 2004

【题解】



难点真的是这道题的翻译。。

它的意思是说I代表合并操作。

比如I X Y

表示把X连同它的子树接在Y的下面,Y成为X的爸爸。

同时X节点以及和它相连的节点的中心站点(根节点)就都变成了Y节点所在子树的中心站点(根节点)

比如

I 2 3

E 2 ->输出为2到3的距离

I 4 5

E 4 ->输出为4到5的距离

I 3 4

E 2 ->输出为2到5的距离

E 3 ->输出为3到5的距离

然后就是用带权并查集来做了。

挺简单的。

就是在转移的时候注意。只有一开始的距离要取模。其他情况都不要取。不然会WA

之前写过带权并查集的通解,配合相应的题看图解吧。

http://blog.csdn.net/harlow_cheng/article/details/52737486

#include <cstdio>
#include <iostream>
#include <algorithm> using namespace std; const int MAXN = 29999;
const int MOD = 1000; int f[MAXN], re[MAXN],n; void input(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
} int ff(int x)
{
if (f[x] == x)
return x;
int olfa = f[x];
f[x] = ff(f[x]);
re[x] = re[x] + re[olfa];//不能取模!
return f[x];
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
int T;
input(T);
while (T--)
{
input(n);
for (int i = 1; i <= n; i++)
f[i] = i, re[i] = 0;
char key[4];
scanf("%s", key);
while (key[0] != 'O')
{
if (key[0] == 'I')
{
int x, y;
input(x); input(y);
int a = ff(x), b = ff(y);
if (a != b)
{
f[a] = b;
re[a] = ((abs(x - y)) % MOD) + re[y] - re[x]; //外面别再取模了。
}
}
else
{
int x;
input(x);
ff(x);
printf("%d\n", re[x]);
}
scanf("%s", key);
}
}
return 0;
}

【35.86%】【POJ 1962】Corporative Network的更多相关文章

  1. 【poj 1962】Corporative Network(图论--带权并查集 模版题)

    P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...

  2. 【暑假】[实用数据结构]UVAlive 3027 Corporative Network

    UVAlive 3027 Corporative Network 题目:   Corporative Network Time Limit: 3000MS   Memory Limit: 30000K ...

  3. 【poj 1988】Cube Stacking(图论--带权并查集)

    题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...

  4. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  5. 【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)

    题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离.问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则 ...

  6. bzoj 2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...

  7. 【POJ】【2348】Euclid‘s Game

    博弈论 题解:http://blog.sina.com.cn/s/blog_7cb4384d0100qs7f.html 感觉本题关键是要想到[当a-b>b时先手必胜],后面的就只跟奇偶性有关了 ...

  8. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

  9. BZOJ2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 284  Solved: 82[Submit][St ...

随机推荐

  1. 洛谷2501 BZOJ1801中国象棋题解

    题目链接 BZ链接 其实dp只要把状态想好后转移就很好写了(flag*1) f[i][j][k]表示到了第i行,有j列放了一个跑,有k列放了两个跑的方案总数 然后大力讨论,转移即可 # include ...

  2. Pycurl介绍

    pycurl — A Python interface to the cURL library Pycurl包是一个libcurl的Python接口.pycurl已经成功的在Python2.2到Pyt ...

  3. Puppet基础

    基础架构图介绍 自动化运维框架:  自动化监控: puppet介绍 常用的批量工具介绍: OS Provisioning:PXE,Cobbler OS Configuration:ansible,pu ...

  4. oracle函数 CONVERT(c1,set1,set2)

    [功能]将源字符串c1 从一个语言字符集set2转换到另一个目的set1字符集 [参数]c1,字符串,set1,set2为字符型参数 [返回]字符串 [示例] select convert('stru ...

  5. Python基础:04映射类型

    字典是Python语言中唯一的映射类型.一个字典对象是可变的,它是一个容器类型,能存储任意个数的Python对象.字典中的数据是无序排列的. 映射类型也可被称做哈希表,哈希表的算法是获取键,对键执行一 ...

  6. oracle中的闪回

    项目中运用: 首先说明:闪回方法有一个前提,就是需要尽早的发现问题,果断的采取行动.若误操作的记录已经在UNDO表空间中被清除,则此方法就不可行了,需要另寻他法. 例如: SELECT * FROM ...

  7. PyODPS DataFrame 处理笛卡尔积的几种方式

    PyODPS 提供了 DataFrame API 来用类似 pandas 的接口进行大规模数据分析以及预处理,本文主要介绍如何使用 PyODPS 执行笛卡尔积的操作. 笛卡尔积最常出现的场景是两两之间 ...

  8. @codechef - BIKE@ Chef and Bike

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 输入 n(n ≤ 22) 个点,m(m ≤ 8000) 个边.每 ...

  9. Python 基础09 面向对象的进一步拓展

    调用类的其他信息 上一讲中提到,在定义方法时,必须有self这一个参数,这个参数表示某个对象,对象有有类的所有性质, 那么我么可以通过self 调用类属性. class Human(object): ...

  10. oracle函数 exp(y)

    [功能]返回e的y次幂(e为数学常量) [参数]y,数字型表达式 [返回]数字 [示例] select exp(3),exp(0),exp(-3) from dual; 返回:20.0855369,1 ...