=传=送=门=

搜题目名会搜出很多奇怪的东西... 这个题目似乎有点毒?

比如在bzoj和loj上可以1A的代码上会在luogu TLE 2个点, 在cogs TLE 10个点 但是根据已有的资料来看数据都是一样的...毒瘤评测姬毁我OI!!!

这个题的状态转移方程并不是很好推的说. 出题人让\(*m^2\)肯定是有目的的啊..

(比如不让乘\(m^2\)我们可能会需要考虑乘\(m^2\)最后再除掉之类的)

然后就化一波式子: 我们令\(sum\)表示\(n\)段路的总和.

\[m^2s^2=m^2\frac{\sum_{i=1}^m(x_i-\bar x)^2}m=m\sum_{i=1}^m(x_i-\bar x)^2\\=m\sum_{i=1}^mx_i^2-m\sum_{i=1}^m2x_i\bar x+m\sum_{i=1}^m\bar x^2\\
=m\sum_{i=1}^mx_i^2-(2\sum_{i=1}^mx_i)*(m*\bar x)+m^2(\frac{sum}m)^2\\=m\sum_{i=1}^mx_i^2-2sum^2+sum^2=m\sum_{i=1}^mx_i^2-sum^2
\]

而\(m\)和\(sum^2\)都是常数我们可以不管, 那就是要求最小化\(\sum_{i=1}^mx_i^2\).

所以令\(f[i][j]\)表示前\(i\)天走了前\(j\)段路, \(s_i\)表示前\(i\)段路的前缀和, 那就能写出状态转移方程:

\[f[i][j]=min\{f[i-1][k]+(s_j-s_k)^2\} (k\in[1,j))
\]

那很明显这个是\(O(n^3)\)可以做的, 这样能拿到60pts了就.

但是想A的话 很明显要采用一种\(o(n^2)\)的算法. 当然你要能\(O(n)\)甚至\(O(1)\)过也没啥问题...

那我们就要搬出斜率优化了. 我们继续化式子.

首先很明显第一维跟后面这一堆没啥关系, 那就不优化了, 也可以把这一维去掉, 到时候一滚动数组(其实不滚也能过)就行了.

那状态转移方程就可以改写成:

\[f[j]=min\{f'[k]+(s_j-s_k)^2\}
\]

然后继续化成y=kx+b的形式, $$f[j]=f'[k]+s_j2-2s_js_k+s_k2$$

移项得\(f'[k]+s_k^2\)=\(2s_j\)\(s_k+\)\(f[j]-s_j^2\)

这样的话我们就可以正常的斜率优化了. 最后输出\(m*f[n][m]-sum^2\)就好啦~

不过要修一下边界条件.

  • 比如第\(i\)天完全可以从\(i\)开始找, 总不可能回去找前面的路(这样也不会出现被0除错误),
  • 然后\(f[1][x]\)显然应该等于\(s[x]^2\), 这样就可以了.
  • 然后又是要开long long的题整天开long long还是挺烦的, 什么时候普及64位系统啊= =

然后就是代码: 并不知道究竟能不能AC 请谨慎复制!

#include <cstdio>
#include <cstring>
const int N=3030;typedef long long LL;
LL s[N],q[N],n,m,h,t;LL f[N],g[N];
inline LL gn(LL a=0,char c=0){
for(;c<'0'||c>'9';c=getchar());
for(;c>47&&c<58;c=getchar())a=a*10+c-48;return a;
}
inline double slope(LL x,LL y){return 1.0*(g[x]+s[x]*s[x]-g[y]-s[y]*s[y])/(s[x]-s[y]);}
int main(){ n=gn(); m=gn();
for(LL i=1;i<=n;++i) s[i]=s[i-1]+gn(),g[i]=s[i]*s[i];
for(LL i=2;i<=m;++i){h=0; t=0; q[h]=i-1;
for(LL j=i;j<=n;++j){
while(h<t&&slope(q[h],q[h+1])<2*s[j]) ++h;
f[j]=g[q[h]]+(s[j]-s[q[h]])*(s[j]-s[q[h]]);
while(h<t&&slope(q[t],q[t-1])>slope(j,q[t])) --t;
q[++t]=j;
}::memcpy(g,f,sizeof(g));
}printf("%lld",f[n]*m-s[n]*s[n]);
}

被莫名的非主观因素的TLE卡掉好多下午的学(tui)习(fei)时间, 心情并不怎么好...

不过下雪了出去玩了一圈就非常爽了~ (⊙v⊙)嗯

【笔记篇】斜率优化dp(二) SDOI2016征途的更多相关文章

  1. 一本通提高篇——斜率优化DP

    斜率优化DP:DP的一种优化形式,主要用于优化如下形式的DP f[i]=f[j]+x[i]*x[j]+... 学习可以参考下面的博客: https://www.cnblogs.com/Xing-Lin ...

  2. 学习笔记:斜率优化DP

    作为数学渣,先复习一下已知两点\((x_1, y_1)\), \((x_2, y_2)\),怎么求过两点的一次函数的斜率... 待定系数法代入 \(y = kx + b\) 有: \(x_1k + b ...

  3. hdu3507 斜率优化学习笔记(斜率优化+dp)

    QWQ菜的真实. 首先来看这个题. 很显然能得到一个朴素的\(dp\)柿子 \[dp[i]=max(dp[i],dp[j]+(sum[i]-sum[j])^2) \] 但是因为\(n\le 50000 ...

  4. 「学习笔记」斜率优化dp

    目录 算法 例题 任务安排 题意 思路 代码 [SDOI2012]任务安排 题意 思路 代码 任务安排 再改 题意 思路 练习题 [HNOI2008]玩具装箱 思路 代码 [APIO2010]特别行动 ...

  5. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  6. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  7. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  8. 【笔记篇】斜率优化dp(一) HNOI2008玩具装箱

    斜率优化dp 本来想直接肝这玩意的结果还是被忽悠着做了两道数论 现在整天浑浑噩噩无心学习甚至都不是太想颓废是不是药丸的表现 各位要知道我就是故意要打删除线并不是因为排版错乱 反正就是一个del标签嘛并 ...

  9. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  10. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

随机推荐

  1. Servilet初步

    以http://locahost:8080/......开头,或者以/开头,都是绝对路径以路径开头:相对路径 路径/路径 Servlet执行流程:(只用自己编写执行的代码,执行的细节全是tomcat封 ...

  2. 8.1_springboot2.x之Actuator应用监控

    1.监管端点测试 引入依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...

  3. vuex-along解决vuex中存储的数据在页面刷新之后失去的问题

    1. 为什么会失去? vuex可以看成是一个"提升变量"的一个工具,它是将state当做全局变量存储.F5刷新页面之后自然随着页面的刷新重新初始化state. 2. 如果解决数据保 ...

  4. Tools: python 安装

    python 安装 python pip解压,cmd进入目录,python setup.py install 环境变量:PATHD:\Python\Python37\Scripts\;D:\Pytho ...

  5. vuex之module

    由于使用单一状态树,应用的所有状态会集中到一个比较大的对象.当应用变得非常复杂时,store 对象就有可能变得相当臃肿. 为了解决以上问题,Vuex 允许我们将 store 分割成模块(module) ...

  6. Java&Quartz实现任务调度

    目录 Java&Quartz实现任务调度 1.Quartz的作用 2.预备 3.Quartz核心 3.1.Job接口 3.2.JobDetail类 3.3 JobExecutionContex ...

  7. 起手一个mpvue项目准备

    1,环境配置(http://mpvue.com/mpvue/quickstart.html) //全局安装vue-cli3脚手架 npm install -g @vue/cli @vue/cli-in ...

  8. Spring使用Redis

    1.引入依赖 <dependency> <groupId>org.springframework.data</groupId> <artifactId> ...

  9. Go Hello World 实例

    ## Go Hello World 实例 package main import "fmt" func main() { /* This is my first sample pr ...

  10. NOIp2018集训test-9-22(am/pm) (联考三day1/day2)

    szzq学长出的题,先orz一下. day1 倾斜的线 做过差不多的题,写在我自己的博客里,我却忘得一干二净,反而李巨记得清清楚楚我写了的. 题目就是要最小化这个东西 $|\frac{y_i-y_j} ...