【笔记篇】斜率优化dp(二) SDOI2016征途
=传=送=门=
搜题目名会搜出很多奇怪的东西... 这个题目似乎有点毒?
比如在bzoj和loj上可以1A的代码上会在luogu TLE 2个点, 在cogs TLE 10个点 但是根据已有的资料来看数据都是一样的...毒瘤评测姬毁我OI!!!
这个题的状态转移方程并不是很好推的说. 出题人让\(*m^2\)肯定是有目的的啊..
(比如不让乘\(m^2\)我们可能会需要考虑乘\(m^2\)最后再除掉之类的)
然后就化一波式子: 我们令\(sum\)表示\(n\)段路的总和.
=m\sum_{i=1}^mx_i^2-(2\sum_{i=1}^mx_i)*(m*\bar x)+m^2(\frac{sum}m)^2\\=m\sum_{i=1}^mx_i^2-2sum^2+sum^2=m\sum_{i=1}^mx_i^2-sum^2
\]
而\(m\)和\(sum^2\)都是常数我们可以不管, 那就是要求最小化\(\sum_{i=1}^mx_i^2\).
所以令\(f[i][j]\)表示前\(i\)天走了前\(j\)段路, \(s_i\)表示前\(i\)段路的前缀和, 那就能写出状态转移方程:
\]
那很明显这个是\(O(n^3)\)可以做的, 这样能拿到60pts了就.
但是想A的话 很明显要采用一种\(o(n^2)\)的算法. 当然你要能\(O(n)\)甚至\(O(1)\)过也没啥问题...
那我们就要搬出斜率优化了. 我们继续化式子.
首先很明显第一维跟后面这一堆没啥关系, 那就不优化了, 也可以把这一维去掉, 到时候一滚动数组(其实不滚也能过)就行了.
那状态转移方程就可以改写成:
\]
然后继续化成y=kx+b的形式, $$f[j]=f'[k]+s_j2-2s_js_k+s_k2$$
移项得\(f'[k]+s_k^2\)=\(2s_j\)\(s_k+\)\(f[j]-s_j^2\)
这样的话我们就可以正常的斜率优化了. 最后输出\(m*f[n][m]-sum^2\)就好啦~
不过要修一下边界条件.
- 比如第\(i\)天完全可以从\(i\)开始找, 总不可能回去找前面的路(这样也不会出现被0除错误),
- 然后\(f[1][x]\)显然应该等于\(s[x]^2\), 这样就可以了.
- 然后又是要开long long的题整天开long long还是挺烦的, 什么时候普及64位系统啊= =
然后就是代码: 并不知道究竟能不能AC 请谨慎复制!
#include <cstdio>
#include <cstring>
const int N=3030;typedef long long LL;
LL s[N],q[N],n,m,h,t;LL f[N],g[N];
inline LL gn(LL a=0,char c=0){
for(;c<'0'||c>'9';c=getchar());
for(;c>47&&c<58;c=getchar())a=a*10+c-48;return a;
}
inline double slope(LL x,LL y){return 1.0*(g[x]+s[x]*s[x]-g[y]-s[y]*s[y])/(s[x]-s[y]);}
int main(){ n=gn(); m=gn();
for(LL i=1;i<=n;++i) s[i]=s[i-1]+gn(),g[i]=s[i]*s[i];
for(LL i=2;i<=m;++i){h=0; t=0; q[h]=i-1;
for(LL j=i;j<=n;++j){
while(h<t&&slope(q[h],q[h+1])<2*s[j]) ++h;
f[j]=g[q[h]]+(s[j]-s[q[h]])*(s[j]-s[q[h]]);
while(h<t&&slope(q[t],q[t-1])>slope(j,q[t])) --t;
q[++t]=j;
}::memcpy(g,f,sizeof(g));
}printf("%lld",f[n]*m-s[n]*s[n]);
}
被莫名的非主观因素的TLE卡掉好多下午的学(tui)习(fei)时间, 心情并不怎么好...
不过下雪了出去玩了一圈就非常爽了~ (⊙v⊙)嗯
【笔记篇】斜率优化dp(二) SDOI2016征途的更多相关文章
- 一本通提高篇——斜率优化DP
斜率优化DP:DP的一种优化形式,主要用于优化如下形式的DP f[i]=f[j]+x[i]*x[j]+... 学习可以参考下面的博客: https://www.cnblogs.com/Xing-Lin ...
- 学习笔记:斜率优化DP
作为数学渣,先复习一下已知两点\((x_1, y_1)\), \((x_2, y_2)\),怎么求过两点的一次函数的斜率... 待定系数法代入 \(y = kx + b\) 有: \(x_1k + b ...
- hdu3507 斜率优化学习笔记(斜率优化+dp)
QWQ菜的真实. 首先来看这个题. 很显然能得到一个朴素的\(dp\)柿子 \[dp[i]=max(dp[i],dp[j]+(sum[i]-sum[j])^2) \] 但是因为\(n\le 50000 ...
- 「学习笔记」斜率优化dp
目录 算法 例题 任务安排 题意 思路 代码 [SDOI2012]任务安排 题意 思路 代码 任务安排 再改 题意 思路 练习题 [HNOI2008]玩具装箱 思路 代码 [APIO2010]特别行动 ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- bzoj4518[Sdoi2016]征途 斜率优化dp
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1657 Solved: 915[Submit][Status] ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 【笔记篇】斜率优化dp(一) HNOI2008玩具装箱
斜率优化dp 本来想直接肝这玩意的结果还是被忽悠着做了两道数论 现在整天浑浑噩噩无心学习甚至都不是太想颓废是不是药丸的表现 各位要知道我就是故意要打删除线并不是因为排版错乱 反正就是一个del标签嘛并 ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- 斜率优化DP学习笔记
先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...
随机推荐
- 牛客 最大值减去最小值小于或等于 num 的子数组数量
题目链接:https://www.nowcoder.com/practice/5fe02eb175974e18b9a546812a17428e?tpId=101&tqId=33086& ...
- No parameter name specified for argument of type
在使用SpringMVC绑定基本类型(如String,Integer等)参数时,应通过@RequestParam注解指定具体的参数名称,否则,当源代码在非debug模式下编译后,运行时会引发Handl ...
- 设置非阻塞的套接字Socket
当使用socket()函数和WSASocket()函数创建套接字时,默认都是阻塞的.在创建套接字之后,通过调用ioctlsocket()函数,将该套接字设置为非阻塞模式.函数的第一个参数是套接字,第二 ...
- 如果手工启动chromedriver
使用selenium模拟登陆网站时,有些网站会识别chrome driver里的json信息,从而判断是不是爬虫程序,做到反爬效果.(比如知乎) 下面说明下怎么手动启动chromedriver 1). ...
- ES6数组Api扩充
1. Array.of( ); ----将一组数据转换成一个数组: const num=201314; const a=Array.of(num); console.log(a); //数组 ...
- [转] js对键盘输入事件绑定到特定按钮。
<script type="text/javascript" language="javascript"> document.onkeyup = f ...
- (PASS)字符数组\字符串数组 和 字符串 的相互转换
1,字符数组 转换为 字符串 java可以使用两种方法直接将字符数组转为字符串. 方法1:直接在构造String时转换. char[] data = {'a', 'b', 'c'}; String s ...
- ubuntu phpize 安裝
php 版本 7.2,所以安裝 php7.2的 sudo apt-get install php7.2-dev 參考 Is is possible to install phpize for PHP7 ...
- js用正则判断身份证号码
在用户注册或修改信息时会用到正则表达式判断身份证号,直接调用该函数即可 //判断身份证号码 function idCardFn(idCard){ }(||)?\d{}([-]|[])([-]|[]\d ...
- 二分法的应用:POJ1064 Cable master
/* POJ1064 Cable master 时间限制: 1000MS 内存限制: 10000K 提交总数: 58217 接受: 12146 描述 Wonderland的居民已经决定举办地区性编程比 ...