【学术篇】SDOI2008 沙拉公主的困惑
传送门!
题目在这里...
题目大意?
难道不是说的很清楚了么OvO
求n!中与m!互质的数的个数..
题目分析.
显然的数论... 所以就是化式子呗..
一个很显然的性质就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\)...
而题目中说了\(m\leqslant n\), ∴ \(m!|n!\)
于是我们只需要计算\(m!\)中与\(m!\)互质的数的个数,然后乘以\(\frac{n!}{m!}\)即可..
我们发现上面加粗的这一坨就是\(\varphi(m!)\)嘛...
所以\(ans=\varphi(m!)*\frac{n!}{m!}\)
又有\(\varphi(x)=x*\prod_{i}^{n}(1-\frac{1}{p_i})\) 其中\(p_i\)表示x的质因数...
而\(m!=1*2*...*m\), 所以\(m!\)的质因数很显然就是不大于\(m\)的质数...
然后带入上式约掉\(m!\)就有了\(ans=n!*\prod_{i}^{n}\frac{p_i-1}{p_i}\) (其中\(p_i\leqslant m\)且\(p_i\)为质数)...
由于多组询问, 而且内存开了256MB不是 所以我们要预处理... 不然会T...
由于上式, 我们要预处理的东西有:
- 筛素数(简单欧拉筛)
- 阶乘(顺着乘一遍取模就行了)
- 逆元(要递推求出所有数的哦) (所以最好用\(O(n)\)的, 不会的话直接看代码就行了 百度一下一堆详细讲解OvO)
- \(mul_i=\prod_{i}^{n}\frac{p_i-1}{p_i}\)这一坨东西...(不大于\(m\)的质数\(p_i\)们的\((1-\frac{1}{p_i})\)的乘积...)
然后处理这一坨的时候也很容易...递推即可.. 显然, 我们有
- 当\(i\)是质数时, \(mul_i=mul_{i-1}*\frac{i-1}{i}\)
- 否则\(mul_i=mul_{i-1}\)即可...
这样就做完了.
实现代码:
#include <cstdio>
typedef long long LL;
const int X=1e7+3;
inline int gn(int a=0,char c=0){
for(;c<48||c>57;c=getchar());
for(;c>47&&c<58;c=getchar())
a=a*10+c-48; return a;
}
int inv[X],fac[X],eu[X],mul[X],pri[X/10],tot;
bool notp[X]; int T,R,M,N;
void prime(){
notp[1]=1;
for(int i=2;i<X;++i){
if(!notp[i])pri[++tot]=i;
for(int j=1;j<=tot&&i*pri[j]<=1e7;++j){
notp[i*pri[j]]=1; if(i%pri[j]==0) break;
}
}
}
void calcinv(){
inv[1]=1;
for(int i=2;i<X;++i){
inv[i]=(LL)(R-R/i)*inv[R%i]%R;
if(inv[i]<0) inv[i]+=R;
}
}
void calcfac(){
fac[1]=1;
for(int i=2;i<X;++i)
fac[i]=(LL)fac[i-1]*i%R;
}
void calcmul(){
mul[1]=1;
for(int i=2;i<X;++i)
if(!notp[i]) mul[i]=(LL)mul[i-1]*(i-1)%R*inv[i]%R;
else mul[i]=mul[i-1];
}
int main(){
T=gn(),R=gn();
prime(); calcinv(); calcfac(); calcmul();
while(T--){
N=gn(),M=gn();
printf("%d\n",(int)((LL)fac[N]*mul[M]%R));
}
}
注意事项~
- 做乘法的时候要转long long,(当然你要是全用long long算当我没说
- 预处理的时候1的值作为边界值给出, 循环要从2开始
- 每一步都记得取模
- 输出的时候记得换行而不是空格(我是不是暴露了什么←_←
完结撒花
【学术篇】SDOI2008 沙拉公主的困惑的更多相关文章
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告
P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...
随机推荐
- URAL 1748 The Most Complex Number
题目链接:https://vjudge.net/problem/11177 题目大意: 求小于等于 n 的最大反素数. 分析: n <= 10^18,而前20个素数的乘积早超过10^18,因此可 ...
- 2019河北省大学生程序设计竞赛(重现赛)J-舔狗 (拓扑排序)
题目链接:https://ac.nowcoder.com/acm/contest/903/J 题意:给你 n 个舔狗和他喜欢的人,让你俩俩配对(只能和喜欢它的和它喜欢的),求剩下的单身狗数量. 思路: ...
- Delphi(ObjectPascal)基础语法
一个程序分为两个部分:1.程序首部:program 来标识这是一个pascal程序 后面的是可执行文件的名称程序名称2.程序体:说明部分:数据先定义后使用执行部分:以begin开始,以end结束 ...
- 8.1_springboot2.x之Actuator应用监控
1.监管端点测试 引入依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...
- C# WinfForm 控件之dev报表 XtraReport (一) 初了解
这个控件其实用法和fast也差不了太多但如果没接触过 真有种老虎吃天的感觉 1.这里先不说那些高深的先说最基本的 在窗体中显示一个设计好的 模版 1.1一般设计和这个程序是分着的为了方便我就先把他们合 ...
- 几何问题 poj 1408
参考博客: 用向量积求线段焦点证明: 首先,我们设 (AD向量 × AC向量) 为 multi(ADC) : 那么 S三角形ADC = multi(ADC)/2 . 由三角形DPD1 与 三角形CPC ...
- elasticsearch 父子文档(十一)
说明 需求 一个产品多个区域销售 每个区域有自己的价格, 方式1冗余行,a 产品分别在 area1 area2 area3区域销售 a产品就会生成3条产品数据 搜索id去重就行了,但是问题就是 聚合 ...
- 【模板篇】Link Cut Tree模板(指针)
网上一片一片的LCT都是数组写的 orz 用指针写splay的人想用指针写LCT找板子都不好找QAQ 所以能A题了之后自然要来回报社会, 把自己的板子丢上来(然而根本没有人会看) LCT讲解就省省吧, ...
- linux fcntl 对文件描述符控制
linux fcntl 对文件描述符控制 linux fcntl 对文件描述符控制 linux fcntl 对文件描述符控制
- webpack4.0高级
环境变量 webpack --env.NODE_ENV=local --env.production --progress Tree Shaking 移除JS上下文字未被引用的代码 只支持ES6的im ...