[luogu 4389] 付公主的背包
题意:求一个较大的多重背包对于每个i的方案数,答案对998244353取模。
思路:
生成函数:
对于一个\(V\)
设:
\(f(x) = \sum_{i=0}^{oo} x ^ {V * i} = {1 \over {1 - x ^ V}}\)
那么就是求这个生成函数的积。
首先将\(f(x)\)取\(ln\)为\(g(x)\),最后\(exp\)回去得到答案。
\(g'(x) = {f'(x) \over f(x)} = (1 - x^V)\sum_{i = 1}^{oo}V * i * x ^ {V}\)
最终\(exp\)一遍得到答案。
时间复杂度\(O(mlogm)\)
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5000010;
const int mod = 998244353;
const int g = 3;
#define ll long long
int A[maxn];
int B[maxn];
int c[maxn],d[maxn];
int e[maxn];
int f[maxn];
int w[maxn][2];
int rev[maxn];
int cnt[maxn];
int v[maxn];
int ans[maxn];
int inv[maxn];
const int vg = (mod + 1) / 3;
int n,m,l;
int len;
inline int read() {
int q=0,f=1;char ch = getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;ch=getchar();
}
while(isdigit(ch)){
q=q*10+ch-'0';ch=getchar();
}
return q*f;
}
inline int pow_mod (int x,int y) {
int res = 1;
while(y) {
if(y & 1) res = (ll) res * x % mod;
x = (ll) x * x % mod;
y >>= 1;
}
return res;
}
inline void NTT(int *a,int n,int type) {
for(len = 1,l = 0;len <= n;len <<= 1, ++l);
for(int i = 0;i < len; ++i) {
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
}
for(int i = 0;i < len; ++i) {
if(i < rev[i]) {
swap(a[i],a[rev[i]]);
}
}
for(int i = 1;i < len; i <<= 1) {
int wn = (~type) ? w[i][0]:w[i][1];
for(int j = 0;j < len;j += (i << 1)) {
int w = 1;
for(int k = 0;k < i; ++k,w = (ll)w * wn % mod) {
int x = (ll)a[i + j + k];
int y = a[j + k];
a[j + k] = (x + y) % mod;
a[i + j + k] = (y + mod - x) % mod;
}
}
}
if(type == -1) {
int tmp = pow_mod(len,mod - 2);
for(int i = 0;i < len; ++i) {
a[i] = (ll)a[i] * tmp % mod;
}
}
}
inline void get_Inv(int *a,int *b,int n) {
if(n == 1) {
b[0] = pow_mod(a[0],mod - 2);
return;
}
get_Inv(a,b,n >> 1);
for(int i = 0;i < n; ++i) {
A[i] = a[i];
B[i] = b[i];
}
NTT(A,n << 1,1);
NTT(B,n << 1,1);
for(int i = 0;i < len; ++i) {
A[i] = (ll)A[i] * B[i] % mod * B[i] % mod;
}
NTT(A,n << 1,-1);
for(int i = 0;i < n; ++i) {
b[i] = ((b[i] << 1) % mod - A[i] + mod) % mod;
}
for(int i = 0;i < len; ++i) {
A[i] = B[i] = 0;
}
}
inline void get_ln(int *a,int *b,int n) {
get_Inv(a,c,n);
for(int i = 0;i < n - 1; ++i) {
d[i] = (ll)(i + 1) * a[i + 1] % mod;
}
NTT(c,n << 1,1);
NTT(d,n << 1,1);
for(int i = 0;i < len; ++i) {
c[i] = (ll) c[i] * d[i] % mod;
}
NTT(c,n << 1,-1);
for(int i = 1;i < n; ++i) {
b[i] = (ll)inv[i] * c[i - 1] % mod;
}
for(int i = 0;i < len; ++i) {
c[i] = d[i] = 0;
}
}
inline void get_exp(int *a,int *b,int n) {
if(n == 1) {
b[0] = 1;
return;
}
get_exp(a,b,n >> 1);
for(int i = 0;i < n; ++i) {
e[i] = b[i];
}
get_ln(b,f,n);
for(int i = 0;i < n; ++i) {
f[i] = (mod - f[i] + a[i]) % mod;
f[0] = (f[0] + 1)%mod;
}
NTT(e,n << 1,1);
NTT(f,n << 1,1);
for(int i = 0;i < len; ++i) {
e[i] = (ll)e[i] * f[i] % mod;
}
NTT(e,n << 1,-1);
for(int i = 0;i < n; ++i) {
b[i] = e[i];
}
for(int i = 0;i < len; ++i) {
e[i] = f[i] = 0;
}
}
int main () {
n = read(),m = read();
inv[1] = 1;
for(int i = 1;i <= n; ++i) {
++cnt[read()];
}
int tmp = 1;
for(;tmp <= m;tmp <<= 1);
for(int i = 1;i <= (tmp << 1);i <<= 1) {
w[i][0] = pow_mod(g,(mod - 1)/(i << 1));
w[i][1] = pow_mod(vg,(mod - 1)/(i<<1));
}
for(int i = 2;i <= tmp; ++i) {
inv[i] = (ll)(mod - mod / i) * inv[mod % i]%mod;
}
for(int i = 1;i <= m; ++i) {
if(cnt[i]) {
int dl = (ll) i * cnt[i] % mod;
for(int j = 1;i * j <= m; ++j) {
v[i * j] = (v[i * j] + dl) % mod;
}
}
}
for(int i = 1;i <= m; ++i) {
v[i] = (ll)inv[i] * v[i] % mod;
}
get_exp(v,ans,tmp);
for(int i = 1;i <= m; ++i) {
printf("%d\n",ans[i] % mod);
}
return 0;
}
//原地爆炸
[luogu 4389] 付公主的背包的更多相关文章
- luogu P4389 付公主的背包
传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{ ...
- 洛谷 4389 付公主的背包——多项式求ln、exp
题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/d ...
- 洛谷 P4389 付公主的背包 解题报告
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...
- LuoguP4389 付公主的背包【生成函数+多项式exp】
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...
- luoguP4389 付公主的背包
luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{ ...
- [luogu4389]付公主的背包(多项式exp)
完全背包方案计数问题的FFT优化.首先写成生成函数的形式:对重量为V的背包,它的生成函数为$\sum\limits_{i=0}^{+\infty}x^{Vi}=\frac{1}{1-x^{V}}$于是 ...
- 洛谷P4389 付公主的背包--生成函数+多项式
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...
- luogu4389 付公主的背包
题目链接:洛谷 题目大意:现在有$n$个物品,每种物品体积为$v_i$,对任意$s\in [1,m]$,求背包恰好装$s$体积的方案数(完全背包问题). 数据范围:$n,m\leq 10^5$ 这道题 ...
- P3489 付公主的背包
题意:n<=1e5,m<=1e5,跑n个物品1到m容量的完全背包. 考虑暴力的做法就是把一些1/(1+x^a)的多项式乘起来即可. 考虑优化,取一下ln,转化为加法,然后exp回去就好了.
随机推荐
- C# 三层架构的一个小练习(Winfrom与SQLite数据库组合)
本文文字方面引用 微冷的風丶(博客地址:https://www.cnblogs.com/smbk/) 代码部分是本人亲自写的一个sqlite数据库的最简单登录界面练手(当时写的太烂了,现在回顾重构一下 ...
- 启动php-fpm和nginx
/usr/local/php/sbin/php-fpm #手动打补丁的启动方式/usr/local/php/sbin/php-fpm start sudo /usr/local/nginx/nginx ...
- 微信小程序截取字符串
我这里用的 str.substring(star,end)第一个参数代表开始位置,第二个参数代表结束位置的下一个位置;若参数值为负数,则将该值转为0;两个参数中,取较小值作为开始位置,截取出来的字符串 ...
- bzoj 1095
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1095 首先我必须得感谢yzjc的细心讲解和某岛的题解,如果没有的话我相信我现在还在纠结..不 ...
- JCF——List
ArrayList LinkedList Vector
- iOS 几种定时器
//第一种 每一秒执行一次(重复性) double delayInSeconds = 1.0; timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_ ...
- Dubbo入门到精通学习笔记(七):基于Dubbo的分布式系统架构介绍(以第三方支付系统架构为例)、消息中间件的作用介绍
文章目录 架构简单介绍 消息中间件在分布式系统中的作用介绍 消息中间件的定义 消息中间件的作用 应用场景 JMS(Java Message Service) JMS消息模型 实现了JMS规范的消息中间 ...
- 1103 Integer Factorization (30)
1103 Integer Factorization (30 分) The K−P factorization of a positive integer N is to write N as t ...
- FreeBSD_11-系统管理——{Part_9-SVN}
一.使用 svn / svnlite 代替 freebsd-update 及 portsnap 等常规工具更新系统及 ports 源码 二.安装可信 ca 机构列表 cd /usr/ports/sec ...
- VC++ 2010 创建高级Ribbon界面详解(2)
Ribbon 控件的使用 1.命令按钮 命令按钮可以说是我们最常用的Ribbon控件了,我们通常都是通过命令按钮来发送某个命令,执行某个动作.它代替了过去的菜单命令,成为使用最频繁的Ribbon控件. ...