1、 volatile的作用

相比Sychronized(重量级锁,对系统性能影响较大),volatile提供了另一种解决 可见性和有序性 ???问题的方案。对于原子性,需要强调一点,也是大家容易误解的一点:对volatile变量的单次读/写操作可以保证原子性的,如long和double类型变量,但是并不能保证i++这种操作的原子性,因为本质上 i++ 是读、写两次操作。

2、volatile的使用

1、防重排序

我们从一个最经典的例子来分析 重排序问题???。大家应该都很熟悉 单例模式 的实现,而在并发环境下的单例实现方式,我们通常可以采用  双重检查加锁(DCL) ???的方式来实现。其源码如下:

 public class Singleton {
public static volatile Singleton singleton;
/**
* 构造函数私有,禁止外部实例化
*/
private Singleton() {};
public static Singleton getInstance() {
if (singleton == null) {
synchronized (singleton) {
if (singleton == null) {
singleton = new Singleton();
}
}
}
return singleton;
}
}

现在我们分析一下为什么要在变量singleton之间加上volatile关键字。要理解这个问题,先要了解对象的构造过程,实例化一个对象其实可以分为三个步骤: 
  (1)分配内存空间。 
  (2)初始化对象。 
  (3)将内存空间的地址赋值给对应的引用。 
但是由于操作系统可以对指令进行重排序,所以上面的过程也可能会变成如下过程: 
  (1)分配内存空间。 
  (2)将内存空间的地址赋值给对应的引用。 
  (3)初始化对象 
  如果是这个流程,多线程环境下就可能将一个未初始化的对象引用暴露出来,从而导致不可预料的结果。因此,为了防止这个过程的重排序,我们需要将变量设置为volatile类型的变量。

2、实现可见性

可见性问题主要指一个线程修改了共享变量值,而另一个线程却看不到。引起可见性问题的主要原因是每个线程拥有自己的一个高速缓存区——线程工作内存。volatile关键字能有效的解决这个问题,我们看下下面的例子,就可以知道其作用:

 public class VolatileTest {
int a = 1;
int b = 2; public void change(){
a = 3;
b = a;
} public void print(){
System.out.println("b="+b+";a="+a);
} public static void main(String[] args) {
while (true){
final VolatileTest test = new VolatileTest();
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
test.change();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
test.print();
}
}).start();
}
}
}

直观上说,这段代码的结果只可能有两种:b=3;a=3 或 b=2;a=1。不过运行上面的代码(可能时间上要长一点),你会发现除了上两种结果之外,还出现了第三种结果:

......
b=2;a=1
b=2;a=1
b=3;a=3
b=3;a=3
b=3;a=1
b=3;a=3
b=2;a=1
b=3;a=3
b=3;a=3
......

为什么会出现b=3;a=1这种结果呢?正常情况下,如果先执行change方法,再执行print方法,输出结果应该为b=3;a=3。相反,如果先执行的print方法,再执行change方法,结果应该是 b=2;a=1。那b=3;a=1的结果是怎么出来的?原因就是第一个线程将值a=3修改后,但是对第二个线程是不可见的,所以才出现这一结果。如果将a和b都改成volatile类型的变量再执行,则再也不会出现b=3;a=1的结果了。

3、保证原子性

关于原子性的问题,上面已经解释过。volatile只能保证对单次读/写的原子性。这个问题可以看下JLS中的描述:

17.7 Non-Atomic Treatment of double and long 
For the purposes of the Java programming language memory model, a single write to a non-volatile long or double value is treated as two separate writes: one to each 32-bit half. This can result in a situation where a thread sees the first 32 bits of a 64-bit value from one write, and the second 32 bits from another write. 
Writes and reads of volatile long and double values are always atomic. 
Writes to and reads of references are always atomic, regardless of whether they are implemented as 32-bit or 64-bit values. 
Some implementations may find it convenient to divide a single write action on a 64-bit long or double value into two write actions on adjacent 32-bit values. For efficiency’s sake, this behavior is implementation-specific; an implementation of the Java Virtual Machine is free to perform writes to long and double values atomically or in two parts. 
Implementations of the Java Virtual Machine are encouraged to avoid splitting 64-bit values where possible. Programmers are encouraged to declare shared 64-bit values as volatile or synchronize their programs correctly to avoid possible complications.

这段话的内容跟我前面的描述内容大致类似。因为long和double两种数据类型的操作可分为高32位和低32位两部分,因此普通的long或double类型读/写可能不是原子的。因此,鼓励大家将共享的long和double变量设置为volatile类型,这样能保证任何情况下对long和double的单次读/写操作都具有原子性。 
  关于volatile变量对原子性保证,有一个问题容易被误解。现在我们就通过下列程序来演示一下这个问题:

public class VolatileTest01 {
volatile int i; public void addI(){
i++;
} public static void main(String[] args) throws InterruptedException {
final VolatileTest01 test01 = new VolatileTest01();
for (int n = 0; n < 1000; n++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
test01.addI();
}
}).start();
}
Thread.sleep(10000);//等待10秒,保证上面程序执行完成
System.out.println(test01.i);
}
}

大家可能会误认为对变量i加上关键字volatile后,这段程序就是线程安全的。大家可以尝试运行上面的程序。下面是我本地运行的结果:981 
可能每个人运行的结果不相同。不过应该能看出,volatile是无法保证原子性的(否则结果应该是1000)。原因也很简单,i++其实是一个复合操作,包括三步骤: 
  (1)读取i的值。 
  (2)对i加1。 
  (3)将i的值写回内存。 
volatile是无法保证这三个操作是具有原子性的,我们可以通过 AtomicInteger 或者 Synchronized 来保证+1操作的原子性。 
注:上面几段代码中多处执行了Thread.sleep()方法,目的是为了增加并发问题的产生几率,无其他作用。

3、volatile的原理

通过上面的例子,我们基本应该知道了volatile是什么以及怎么使用。现在我们再来看看volatile的底层是怎么实现的。

1、可见性实现:

  在前文中已经提及过,线程本身并不直接与主内存进行数据的交互,而是通过线程的工作内存来完成相应的操作。这也是导致线程间数据不可见的本质原因。因此要实现volatile变量的可见性,直接从这方面入手即可。对volatile变量的写操作与普通变量的主要区别有两点: 
  (1)修改volatile变量时会强制将修改后的值刷新的主内存中。 
  (2)修改volatile变量后会导致其他线程工作内存中对应的变量值失效。因此,再读取该变量值的时候就需要重新从读取主内存中的值。 
  通过这两个操作,就可以解决volatile变量的可见性问题。

2、有序性实现:

  在解释这个问题前,我们先来了解一下Java中的happen-before规则,JSR 133中对Happen-before的定义如下:

Two actions can be ordered by a happens-before relationship.If one action happens before another, then the first is visible to and ordered before the second.

通俗一点说就是如果a happen-before b,则a所做的任何操作对b是可见的。(这一点大家务必记住,因为happen-before这个词容易被误解为是时间的前后)。我们再来看看JSR 133中定义了哪些happen-before规则:

• Each action in a thread happens before every subsequent action in that thread. 
• An unlock on a monitor happens before every subsequent lock on that monitor. 
• A write to a volatile field happens before every subsequent read of that volatile. 
• A call to start() on a thread happens before any actions in the started thread. 
• All actions in a thread happen before any other thread successfully returns from a join() on that thread. 
• If an action a happens before an action b, and b happens before an action c, then a happens before c.

翻译过来为:

  • 同一个线程中的,前面的操作 happen-before 后续的操作。(即单线程内按代码顺序执行。但是,在不影响在单线程环境执行结果的前提下,编译器和处理器可以进行重排序,这是合法的。换句话说,这一是规则无法保证编译重排和指令重排)。
  • 监视器上的解锁操作 happen-before 其后续的加锁操作。(Synchronized 规则)
  • 对volatile变量的写操作 happen-before 后续的读操作。(volatile 规则)
  • 线程的start() 方法 happen-before 该线程所有的后续操作。(线程启动规则)
  • 线程所有的操作 happen-before 其他线程在该线程上调用 join 返回成功后的操作。
  • 如果 a happen-before b,b happen-before c,则a happen-before c(传递性)。

4、volatile的使用优化

著名的Java并发编程大师Doug lea在JDK 7的并发包里新增一个队列集合类LinkedTransferQueue,它在使用volatile变量时,用一种追加字节的方式来优化队列出队和入队的性能。LinkedTransferQueue的代码如下:

/** 队列中的头部节点 */
private transient final PaddedAtomicReference<QNode> head;
/** 队列中的尾部节点 */
private transient final PaddedAtomicReference<QNode> tail;
static final class PaddedAtomicReference <T> extends AtomicReference T> {
// 使用很多4个字节的引用追加到64个字节
Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
PaddedAtomicReference(T r) {
super(r);
}
}
public class AtomicReference <V> implements java.io.Serializable {
private volatile V value;
// 省略其他代码

追加字节能优化性能?这种方式看起来很神奇,但如果深入理解处理器架构就能理解其中的奥秘。让我们先来看看LinkedTransferQueue这个类,它使用一个内部类类型来定义队列的头节点(head)和尾节点(tail),而这个内部类PaddedAtomicReference相对于父类AtomicReference只做了一件事情,就是将共享变量追加到64字节。我们可以来计算下,一个对象的引用占4个字节,它追加了15个变量(共占60个字节),再加上父类的value变量,一共64个字节。 
为什么追加64字节能够提高并发编程的效率呢?因为对于英特尔酷睿i7、酷睿、Atom和NetBurst,以及Core Solo和Pentium M处理器的L1、L2或L3缓存的高速缓存行是64个字节宽,不支持部分填充缓存行,这意味着,如果队列的头节点和尾节点都不足64字节的话,处理器会将它们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头、尾节点,当一个处理器试图修改头节点时,会将整个缓存行锁定,那么在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的入队和出队操作则需要不停修改头节点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。Doug lea使用追加到64字节的方式来填满高速缓冲区的缓存行,避免头节点和尾节点加载到同一个缓存行,使头、尾节点在修改时不会互相锁定。 
那么是不是在使用volatile变量时都应该追加到64字节呢?不是的。在两种场景下不应该使用这种方式。

  • 缓存行非64字节宽的处理器。如P6系列和奔腾处理器,它们的L1和L2高速缓存行是32个字节宽。
  • 共享变量不会被频繁地写。因为使用追加字节的方式需要处理器读取更多的字节到高速缓冲区,这本身就会带来一定的性能消耗,如果共享变量不被频繁写的话,锁的几率也非常小,就没必要通过追加字节的方式来避免相互锁定。

参考: 
Java 并发编程:volatile的使用及其原理 
就是要你懂Java中volatile关键字实现原理

参考文档: https://blog.csdn.net/devotion987/article/details/68486942

volatile的使用及其原理的更多相关文章

  1. Java 并发编程:volatile的使用及其原理

    Java并发编程系列: Java 并发编程:核心理论 Java并发编程:Synchronized及其实现原理 Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) Java 并发编程 ...

  2. Java volatile 关键字底层实现原理解析

    本文转载自Java volatile 关键字底层实现原理解析 导语 在Java多线程并发编程中,volatile关键词扮演着重要角色,它是轻量级的synchronized,在多处理器开发中保证了共享变 ...

  3. 【Java并发编程】11、volatile的使用及其原理

    一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchronized关键字来解决这些个问题,不过如果 ...

  4. volatile与synchronized实现原理

    参考文章:https://www.cnblogs.com/charlesblc/p/5994162.html --------------------------------------------- ...

  5. 【转】Java 并发编程:volatile的使用及其原理

    一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchronized关键字来解决这些个问题,不过如果 ...

  6. Java 并发编程:volatile的使用及其原理(二)

    一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchronized关键字来解决这些个问题,不过如果 ...

  7. 深入理解java:2.1. volatile的使用及其原理

    引言 在多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”. 可见性的意思是 ...

  8. volatile的作用和原理

    1.保持内存可见性内存可见性:所有线程都能看到共享内存的最新状态.每次读取前必须先从主内存刷新最新的值.每次写入后必须立即同步回主内存当中.Java通过几种原子操作完成工作内存和主内存的交互:lock ...

  9. 【死磕Java并发】-----深入分析volatile的实现原理

      通过前面一章我们了解了synchronized是一个重量级的锁,虽然JVM对它做了很多优化,而下面介绍的volatile则是轻量级的synchronized.如果一个变量使用volatile,则它 ...

随机推荐

  1. 截取url参数

    //获得参数(只对字母数字等有效,参数值为中文则不能传) function getQueryString(name) { var reg = new RegExp("(^|&)&qu ...

  2. Arcpy 将要素类添加到当前工作窗口(内容列表)

    test1layer=arcpy.mapping.Layer( folder+"\\"+"result.shp") mxd = arcpy.mapping.Ma ...

  3. servlet的ServletContext接口

    ServletContext Servlet 上下文 每个web工程都只有一个ServletContext对象,也就是不管在哪个servlet里面,获取到的这个ServletContext对象都是同一 ...

  4. redis性能

  5. tee - 从标准输入写往文件和标准输出

    总览 (SYNOPSIS) tee [OPTION]... [FILE]... 描述 (DESCRIPTION) 把 标准输入 的 数据 复制到 每一个 文件 FILE, 同时 送往 标准输出. -a ...

  6. Linux 100个常用指令

    1.ls 列出目录内容. 文件属性: -:普通文件 d:目录文件 b:块设备 c:字符设备文件 l:符号连接文件 p:命令管道 s:套接字文件 文件权限: 9位数字,每3位一组 文件硬链接次数 文件所 ...

  7. windows server 2016 支持多用户远程登录

    服务器设置多用户同时远程桌面,可以提高访问效率,避免人多抢登服务器. 1. 首先需要先安装远程桌面服务  配置组策略,运行框输入gpedit.msc,打开计算机配置–>管理模板—>wind ...

  8. printf sscanf进阶

    printf ; printf (3d", a);//将打印 035 printf(“%-*s”, width, string): “*”: 在这里用width代替,其实和printf(“% ...

  9. Ubuntu下串口工具

    一.Kermit 1.安装: sudo apt-get install ckermit 2.配置: sudo gedit /etc/kermit/kermrc 3.在文件末端添加如下内容 : set ...

  10. eclipse发布路径变更

    但是其默认访问的目录是eclipse临时目录而非Tomcat目录, 建议双击tomcat進入配制界面Service Locations 修改选项为:Use Tomcat installation(ta ...