给定一些矩形2 求覆盖面积 矩形不超过200个

1#

算法1 朴素思想 虽然朴素但是代码却有意思

利用容斥原理

复杂度高达 N*2^N

class Solution:
def intersect(rec1,rec2):
return [max(rec1[1],rec2[1]),
max(rec1[2],rec2[2]),
min(rec1[3],rec2[3]),
min(rec1[4],rec2[4]
]
#这里是两个矩形的两点式求 矩形的相交子矩形 *非常值得思考 def area(rec):
dx=max(0,rec[2]-rec[0])
dy=max(0,rec[3]-rec[1])
return dx*dy ans=0 for size in range(1,len(rectangles)+1): for group in itertools.combinations(rectangles,size):
ans = ans +(-1)** (size+1) * area(reduce(intersect,group))
return ans%mod

2#

点位压缩,压缩后进行暴力循环

同时压缩x和y

最后返回

class Solution(object):
def rectangleArea(self, rectangles):
N = len(rectangles)
Xvals, Yvals = set(), set()
for x1, y1, x2, y2 in rectangles:
Xvals.add(x1); Xvals.add(x2)
Yvals.add(y1); Yvals.add(y2) imapx = sorted(Xvals)
imapy = sorted(Yvals)
mapx = {x: i for i, x in enumerate(imapx)}
mapy = {y: i for i, y in enumerate(imapy)} grid = [[0] * len(imapy) for _ in imapx]
for x1, y1, x2, y2 in rectangles:
for x in xrange(mapx[x1], mapx[x2]):
for y in xrange(mapy[y1], mapy[y2]):
grid[x][y] = 1 ans = 0
for x, row in enumerate(grid):
for y, val in enumerate(row):
if val:
ans += (imapx[x+1] - imapx[x]) * (imapy[y+1] - imapy[y])
return ans % (10**9 + 7)

N^3

3#

算法3 扫描线算法

将每一个矩形看作一个 "事件" 这样的事件

class Solution(object):
def rectangleArea(self, rectangles):
# Populate events
OPEN, CLOSE = 0, 1
events = []
for x1, y1, x2, y2 in rectangles:
events.append((y1, OPEN, x1, x2))
events.append((y2, CLOSE, x1, x2))
events.sort() def query():
ans = 0
cur = -1
for x1, x2 in active:
cur = max(cur, x1)
ans += max(0, x2 - cur)
cur = max(cur, x2)
return ans active = []
cur_y = events[0][0]
ans = 0
for y, typ, x1, x2 in events:
# For all vertical ground covered, update answer
ans += query() * (y - cur_y) # Update active intervals
if typ is OPEN:
active.append((x1, x2))
active.sort()
else:
active.remove((x1, x2)) cur_y = y return ans % (10**9 + 7)

4#

注意到刚才的3算法中使用了 区间维护的算法 这里使用线段树维护这个区间

使得达到 NlogN

下面是py 实现线段树

class Node:
def __init__(self,start,end):
self.start=start
self.end=end
self.mid=(start+end)//2 self.active_count=0
self.totle =0 self._left=None
self._right=None
@property
def right(self):
self._right= self._right or Node(self.mid,self.end)
return self._right @property
def left(self):
self._left=self._left or Node(self.start,self.mid)
return self._left #更新 i j 合适的区域 + val
#同时返回 i j 之间的x大小
def update(self,i,j,val):
print(str(i)+" "+str(j))
if(i>=j):
return 0 if(i==self.start and j==self.end):
self.active_count = self.active_count + val
else:
self.left .update( i, min( self.mid ,j ) , val )
self.right.update( max(self.mid,i) ,j, val ) #当前区域有 至少一个覆盖
if(self.active_count>0): self.totle= X[self.end]-X[self.start]
else: self.totle= self.left.totle + self.right.totle return self.totle class Solution:
def rectangleArea(self, rectangles):
"""
:type rectangles: List[List[int]]
:rtype: int
"""
ACTIVE = 1
DEACTIVE = -1
global X
X=set()
events=[]
for rect in rectangles:
X.add(rect[0])
X.add(rect[2]) events.append([rect[1],rect[0],rect[2],ACTIVE])
events.append([rect[3],rect[0],rect[2],DEACTIVE]) X=sorted(X)
events=sorted(events)
pos2idx={ x:i for i,x in enumerate(X) } sum_area=0
y_cur=0
y_cur_next=0
x_cur=0 SegNode = Node(0,len(pos2idx))
print(pos2idx)
for event in events:
y_cur_next=event[0]
sum_area=sum_area+(y_cur_next-y_cur)*x_cur x_cur=SegNode.update(pos2idx[event[1]],pos2idx[event[2]],event[3])
print(event)
print(x_cur) y_cur=y_cur_next return sum_area%(1000000000 + 7)

注意这里的 下标实际意义不是 容器 而是 标志

所以 会有

start mid

mid end

这样的划分方法 应该注意

另外利用python 的 property 很方便的写出了懒申请策略

(python 做点集压缩真的方便

付:

leetcode 56. Merge Intervals On 求overlap

leetcode 850. Rectangle Area II的更多相关文章

  1. [LeetCode] 850. Rectangle Area II 矩形面积之二

    We are given a list of (axis-aligned) rectangles.  Each rectangle[i] = [x1, y1, x2, y2] , where (x1, ...

  2. [LeetCode] 223. Rectangle Area 矩形面积

    Find the total area covered by two rectilinearrectangles in a 2D plane. Each rectangle is defined by ...

  3. leetcode之Rectangle Area

    Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defined b ...

  4. [Swift]LeetCode850. 矩形面积 II | Rectangle Area II

    We are given a list of (axis-aligned) rectangles.  Each rectangle[i] = [x1, y1, x2, y2] , where (x1, ...

  5. Java for LeetCode 223 Rectangle Area

    Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defined b ...

  6. (easy)LeetCode 223.Rectangle Area

    Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defined b ...

  7. leetcode:Rectangle Area

    Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defined b ...

  8. Java [Leetcode 223]Rectangle Area

    题目描述: Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is def ...

  9. LeetCode(41)-Rectangle Area

    题目: Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defin ...

随机推荐

  1. 大半宿,封装了一个MP3播放器的类,写了个简陋的播放器

    用 winmm.lib 写的 封装不是很好,而且没有优化,效率可能有问题,但是现在几乎没有什么大问题 我用我封装的类,写了一个小播放器,界面上的所有功能都实现了,包括双击列表中的文件名,直接播放文件 ...

  2. mysql数据库字段bigint使用

    Mysql里有个数据类型bigint 在java转换成实体对象时,处理不当容易出现以下异常: java.lang.ClassCastException: java.lang.Long cannot b ...

  3. Leetcode931. Minimum Falling Path Sum下降路径最小和

    给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和. 下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素.在下一行选择的元素和当前行所选元素最多相隔一列. 示例: 输入:[ ...

  4. 9.SpringJDBC模板类

    1. Spring框架中提供了很多持久层的模板类来简化编程,使用模板类编写程序会变的简单 2. 提供了JDBC模板,Spring框架提供的 * JdbcTemplate类 3. Spring框架可以整 ...

  5. css,js文件后面加一个版本号

    由于前几天,更新了项目,更新的文件有js文件,今天客人截图过来,我发现修改之后的效果没有显示出来,我回复说清理浏览器缓存.到了晚上,客人找老板,说还没有处理到這个,说客人不懂這个.所以想到之前自己为了 ...

  6. rsyslog 服务器重启后 发现不能接受到外部日志 只能接受本地日志 关闭防火墙即可

    rsyslog 服务器重启后 发现不能接受到外部日志 只能接受本地日志  关闭防火墙即可 1 关闭防火墙: # systemctl stop firewalld 2 将SELINUX设置为disabl ...

  7. Cannot find module '@babel/plugin-proposal-class-properties'

    cnpm install --save-dev @babel/plugin-proposal-class-properties

  8. WebLogic使用总结(二)——WebLogic卸载[转]

    一.WebLogic 12c的卸载 WebLogic的卸载是非常容易的,找到WebLogic的卸载程序,如下图所示:

  9. 7 Serialize and Deserialize Binary Tree 序列化及反序列化二叉树

    原题网址:http://www.lintcode.com/zh-cn/problem/serialize-and-deserialize-binary-tree/# 设计一个算法,并编写代码来序列化和 ...

  10. Ajax4Jsf 简单介绍

    Ajax4jsf 允许开发人员将 Ajax 功能添加到 JSF 应用程序中,而不需要 JavaScript 或用 Ajax 图形部件替换现有的组件.这个包还允许在使用 Java 2D 库时动态地生成图 ...