【Flink】Flink作业调度流程分析
1. 概述
当向Flink集群提交用户作业时,从用户角度看,只需要作业处理逻辑正确,输出正确的结果即可;而不用关心作业何时被调度的,作业申请的资源又是如何被分配的以及作业何时会结束;但是了解作业在运行时的具体行为对于我们深入了解Flink原理有非常大的帮助,并且对我们如何编写更合理的作业逻辑有指导意义,因此本文详细分析作业的调度及资源分配以及作业的生命周期。
2. 流程分析
基于社区master主线(1.11-SNAPSHOT),commit: 12f7873db54cfbc5bf853d66ccd4093f9b749c9a ,HA基于ZK实现分析
上图概括了Flink作业从Client端提交到到Flink集群的提交的基本流程[1]。
当运行./flink run
脚本提交用户作业至Dispathcer后,Dispatcher会拉起JobManagerRunner,而后JobManagerRunner会向Zookeeper注册竞争Leader。对于之前流程有兴趣可以参考深入理解Flink-On-Yarn模式
当JobManagerRunner
竞争成为Leader时,会调用JobManagerRunnerImpl#grantLeadership
,此时便开始处理作业,会通过如下的代码调用路径启动JobMaster。
- JobManagerRunnerImpl#grantLeadership
- JobManagerRunnerImpl#verifyJobSchedulingStatusAndStartJobManager
- JobManagerRunnerImpl#startJobMaster。
startJobMaster方法会首先将该作业的ID写入对应的ZK目录并置为RUNNING状态,写入该目录可用于在Dispathcer接收作业时,判断该作业是否重复提交或恢复作业时使用;在JobManagerRunner调度作业时也在从ZK上拉取作业信息来判断作业状态,若为DONE状态,则无需调度。启动JobMaster时会先启动其RPC Endpoint,以便与其他组件进行RPC调用,之后JobMaster便通过JobMaster#startJobExecution开始执行作业,执行作业前会有些前置校验,如必须确保运行在主线程中;启动JobMaster上的一些服务(组件),如TaskManager和ResourceManager的心跳管理;启动SlotPool、Scheduler;重连至ResourceManager,并且在ZK中注册监听ResourceManager Leader的变化的Retriever等。
当初始化完JobMaster上相应服务(组件)后,便开始调度,会有如下代码调用路径 - JobMaster#start
- JobMaster#startJobExecution
- JobMaster#resetAndStartScheduler
- JobMaster#startScheduling
- SchedulerBase#startScheduling。
我们知道用户编写的作业是以JobGraph提交到Dispatcher,但是在实际调度时会将JobGraph转化为ExecutionGraph,JobGraph生成ExecutionGraph是在SchedulerBase对象初始化的时候完成转化,如下图所示表示了典型的转化过程(JobVertex与ExecutionJobVertex一一对应),而具体的转化逻辑实现可参考如何生成ExecutionGraph及物理执行图
在SchedulerBase初始化时生成ExecutionGraph后,之后便基于ExecutionGraph调度,而调度基类SchedulerBase默认实现为DefaultScheduler,会继续通过DefaultScheduler#startSchedulingInternal调度作业,此时会将作业(ExecutionGraph)的状态从CREATED状态变更为RUNNING状态,此时在Flink web界面查看任务的状态便已经为RUNNING,但注意此时作业(各顶点)实际并未开始调度,顶点还是处于CREATED状态,任作业状态与顶点状态不完全相关联,有其各自的演化生命周期,具体可参考Flink作业调度[2];然后根据不同的策略EagerSchedulingStrategy(主要用于流式作业,所有顶点(ExecutionVertex)同时开始调度)和LazyFromSourcesSchedulingStrategy(主要用于批作业,从Source开始开始调度,其他顶点延迟调度)调度。
当提交流式作业时,会有如下代码调用路径:
- EagerSchedulingStrategy#startScheduling
- EagerSchedulingStrategy#allocateSlotsAndDeploy,在部署之前会根据待部署的ExecutionVertex生成对应的ExecutionVertexDeploymentOption,然后调用DefaultScheduler#allocateSlotsAndDeploy开始部署。同样,在部署之前也需要进行一些前置校验(ExecutionVertex对应的Execution的状态必须为CREATED),接着将待部署的ExecutionVertex对应的Execution状态变更为SCHEDULED,然后开始为ExecutionVertex分配Slot。会有如下的调用代码路径:
- DefaultScheduler#allocateSlots(该过程会ExecutionVertex转化为ExecutionVertexSchedulingRequirements,会封装包含一些location信息、sharing信息、资源信息等)
- DefaultExecutionSlotAllocator#allocateSlotsFor,该方法会开始逐一异步部署各ExecutionVertex,部署也是根据不同的Slot提供策略来分配,接着会经过如下代码调用路径层层转发,SlotProviderStrategy#allocateSlot -> SlotProvider#allocateSlot(SlotProvider默认实现为SchedulerImpl) -> SchedulerImpl#allocateSlotInternal -> SchedulerImpl#internalAllocateSlot(该方法会根据vertex是否共享slot来分配singleSlot/SharedSlot),以singleSlot为例说明。
在分配slot时,首先会在JobMaster中SlotPool中进行分配,具体是先SlotPool中获取所有slot,然后尝试选择一个最合适的slot进行分配,这里的选择有两种策略,即按照位置优先和按照之前已分配的slot优先;若从SlotPool无法分配,则通过RPC请求向ResourceManager请求slot,若此时并未连接上ResourceManager,则会将请求缓存起来,待连接上ResourceManager后再申请。
当ResourceManager收到申请slot请求时,若发现该JobManager未注册,则直接抛出异常;否则将请求转发给SlotManager处理,SlotManager中维护了集群所有空闲的slot(TaskManager会向ResourceManager上报自己的信息,在ResourceManager中由SlotManager保存Slot和TaskManager对应关系),并从其中找出符合条件的slot,然后向TaskManager发送RPC请求申请对应的slot。
等待所有的slot申请完成后,然后会将ExecutionVertex对应的Execution分配给对应的Slot,即从Slot中分配对应的资源给Execution,完成分配后可开始部署作业。
部署作业代码调用路径如下:DefaultScheduler#waitForAllSlotsAndDeploy -> DefaultScheduler#deployAll -> DefaultScheduler#deployOrHandleError -> DefaultScheduler#deployTaskSafe -> DefaultExecutionVertexOperations#deploy -> ExecutionVertex#deploy -> Execution#deploy(每次调度ExecutionVertex,都会有一个Execute,在此阶段会将Execution的状态变更为DEPLOYING状态,并且为该ExecutionVertex生成对应的部署描述信息,然后从对应的slot中获取对应的TaskManagerGateway,以便向对应的TaskManager提交Task) -> RpcTaskManagerGateway#submitTask(此时便将Task通过RPC提交给了TaskManager)。
TaskManager(TaskExecutor)在接收到提交Task的请求后,会经过一些初始化(如从BlobServer拉取文件,反序列化作业和Task信息、LibaryCacheManager等),然后这些初始化的信息会用于生成Task(Runnable对象),然后启动该Task,其代码调用路径如下 Task#startTaskThread(启动Task线程)-> Task#run(将ExecutionVertex状态变更为RUNNING状态,此时在FLINK web前台查看顶点状态会变更为RUNNING状态,另外还会生成了一个AbstractInvokable对象,该对象是FLINK衔接执行用户代码的关键,而后会经过如下调用AbstractInvokable#invoke(AbstractInvokable有几个关键的子类实现, BatchTask/BoundedStreamTask/DataSinkTask/DataSourceTask/StreamTask/SourceStreamTask。对于streaming类型的Source,会调用StreamTask#invoke)-> StreamTask#invoke -> StreamTask#beforeInvoke -> StreamTask#initializeStateAndOpen(初始化状态和进行初始化,这里会调用用户的open方法(如自定义实现的source))-> StreamTask#runMailboxLoop,便开始处理Source端消费的数据,并流入下游算子处理。
至此作业从提交到资源分配及调度运行整体流程就已经分析完毕,对于流式作业而言,正常情况下其会一直运行,不会结束。
3. 总结
对于作业的运行,会先提交至Dispatcher,由Dispatcher拉起JobManagerRunner,在JobManagerRunner成为Leader后,便开始处理作业,首先会根据JobGraph生成对应的ExecutionGraph,然后开始调度,作业的状态首先会变更为RUNNING,然后对各ExecutionVertex申请slot,申请slot会涉及JM与RM、TM之间的通信,当在TM上分配完slot后,便可将Task提交至TaskManager,然后TaskManager会为每个提交的Task生成一个单独的线程处理。
参考
- https://www.infoq.cn/article/RWTM9o0SHHV3Xr8o8giT
- https://flink.sojb.cn/internals/job_scheduling.html
【Flink】Flink作业调度流程分析的更多相关文章
- 3.Flink实时项目之流程分析及环境搭建
1. 流程分析 前面已经将日志数据(ods_base_log)及业务数据(ods_base_db_m)发送到kafka,作为ods层,接下来要做的就是通过flink消费kafka 的ods数据,进行简 ...
- hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析
hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析 Spark是一种快速.通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集 ...
- flink checkpoint 源码分析 (二)
转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8260370.html flink checkpoint 源码分析 (一)一文主要讲述了在JobMan ...
- flink1.10版local模式提交job流程分析
1.WordCount程序实例 2.本地监听9000端口后测试结果 3.job提交流程 4.local模式执行StreamGraph任务 5.流程分析 flink job提交流程个人理解可以大致分为定 ...
- 大数据计算引擎之Flink Flink CEP复杂事件编程
原文地址: 大数据计算引擎之Flink Flink CEP复杂事件编程 复杂事件编程(CEP)是一种基于流处理的技术,将系统数据看作不同类型的事件,通过分析事件之间的关系,建立不同的时事件系序列库,并 ...
- 8、Struts2 运行流程分析
1.流程分析: 请求发送给 StrutsPrepareAndExecuteFilter StrutsPrepareAndExecuteFilter 询问 ActionMapper: 该请求是否是一个 ...
- freeswitch呼叫流程分析
今天翻文档时发现之前整理的关于freeswitch呼叫相关的内容,写成博文分享出来也方便我以后查阅. 整体结构图 FreeswitchCore 模块加载过程 freeswitch主程序初始化时会从mo ...
- u-boot 流程分析
u-boot 介绍: 对于计算机来说 , 从一开始上机通电是无法直接启动操作系统的 , 这中间需要一个引导过程 , 嵌入式Linux系统同样离不开引导程序 , 这个启动程序就叫启动加载程序(Boot ...
- thttpd和cgilua安装与运行流程分析
安装 参考如下博文安装thttpd软件 http://blog.csdn.net/21aspnet/article/details/7045845 http://blog.csdn.net/drago ...
随机推荐
- linux 使用 jiffies 计数器
这个计数器和来读取它的实用函数位于 <linux/jiffies.h>, 尽管你会常常只是包含 <linux/sched.h>, 它会自动地将 jiffies.h 拉进来. 不 ...
- vue-learning:31 - component - 组件间通信的6种方法
vue组件间通信的6种方法 父子组件通信 prop / $emit 嵌套组件 $attrs / $liteners 后代组件通信 provide / inject 组件实例引用 $root / $pa ...
- koa2--06.koa-static中间件的使用
koa-static中间件,主要用于设置静态文件资源的文件路径 首先安装koa-static中间,以下是代码示例 const koa = require('koa'); var router = re ...
- BZOJ 3166
BZOJ3196: Tyvj 1730 二逼平衡树 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3196 题意: 1.查询k在区间内的排名 ...
- Jenkins安装部署与使用
一.Jenkins平台安装部署 Jenkins官网免费获取Jenkins软件,官网地址为:http://mirrors.jenkins-ci.org/下载稳定的Jenkins版本.由于Jenkins是 ...
- 理解C/C++的复杂声明
理解C/C++的复杂声明 曾经碰到过让你迷惑不解.类似于int * (* (*fp1) (int) ) [10];这样的变量声明吗?本文将由易到难,一步一步教会你如何理解这种复C/C ...
- MyBatis原理-延迟加载,一级缓存,二级缓存设置
一.延迟加载 resultMap中的association和collection标签具有延迟加载的功能. 延迟加载的意思是说,在关联查询时,利用延迟加载,先加载主信息.使用关联信息时再去加载关联信息. ...
- 用本地自定义域名访问远程服务器,并支持websocket和cookie
场景 在公司会有很多测试的机器,或者一些OA服务,Confluence,Jenkins,各种中间件的后台等等,都使用HTTP访问,且由于是内网机器没有域名,输入IP又要输入不同端口,访问起来比较麻烦. ...
- 「Luogu P2015」二叉苹果树 解题报告
题面 一个二叉树,边数为n\((2<n\le 100)\),每条边有一个权值,求剪枝后剩下p\((1<p<n)\)条边,使p条边的权值和最大 还看不懂?-- 2 5 input:5 ...
- 1050 螺旋矩阵 (25 分)C语言
本题要求将给定的 N 个正整数按非递增的顺序,填入"螺旋矩阵".所谓"螺旋矩阵",是指从左上角第 1 个格子开始,按顺时针螺旋方向填充.要求矩阵的规模为 m 行 ...