1. 概述

当向Flink集群提交用户作业时,从用户角度看,只需要作业处理逻辑正确,输出正确的结果即可;而不用关心作业何时被调度的,作业申请的资源又是如何被分配的以及作业何时会结束;但是了解作业在运行时的具体行为对于我们深入了解Flink原理有非常大的帮助,并且对我们如何编写更合理的作业逻辑有指导意义,因此本文详细分析作业的调度及资源分配以及作业的生命周期。

2. 流程分析

基于社区master主线(1.11-SNAPSHOT),commit: 12f7873db54cfbc5bf853d66ccd4093f9b749c9a ,HA基于ZK实现分析


上图概括了Flink作业从Client端提交到到Flink集群的提交的基本流程[1]。

当运行./flink run脚本提交用户作业至Dispathcer后,Dispatcher会拉起JobManagerRunner,而后JobManagerRunner会向Zookeeper注册竞争Leader。对于之前流程有兴趣可以参考深入理解Flink-On-Yarn模式

JobManagerRunner竞争成为Leader时,会调用JobManagerRunnerImpl#grantLeadership,此时便开始处理作业,会通过如下的代码调用路径启动JobMaster。

  • JobManagerRunnerImpl#grantLeadership
  • JobManagerRunnerImpl#verifyJobSchedulingStatusAndStartJobManager
  • JobManagerRunnerImpl#startJobMaster。
    startJobMaster方法会首先将该作业的ID写入对应的ZK目录并置为RUNNING状态,写入该目录可用于在Dispathcer接收作业时,判断该作业是否重复提交或恢复作业时使用;在JobManagerRunner调度作业时也在从ZK上拉取作业信息来判断作业状态,若为DONE状态,则无需调度。启动JobMaster时会先启动其RPC Endpoint,以便与其他组件进行RPC调用,之后JobMaster便通过JobMaster#startJobExecution开始执行作业,执行作业前会有些前置校验,如必须确保运行在主线程中;启动JobMaster上的一些服务(组件),如TaskManager和ResourceManager的心跳管理;启动SlotPool、Scheduler;重连至ResourceManager,并且在ZK中注册监听ResourceManager Leader的变化的Retriever等。
    当初始化完JobMaster上相应服务(组件)后,便开始调度,会有如下代码调用路径
  • JobMaster#start
  • JobMaster#startJobExecution
  • JobMaster#resetAndStartScheduler
  • JobMaster#startScheduling
  • SchedulerBase#startScheduling。

我们知道用户编写的作业是以JobGraph提交到Dispatcher,但是在实际调度时会将JobGraph转化为ExecutionGraph,JobGraph生成ExecutionGraph是在SchedulerBase对象初始化的时候完成转化,如下图所示表示了典型的转化过程(JobVertex与ExecutionJobVertex一一对应),而具体的转化逻辑实现可参考如何生成ExecutionGraph及物理执行图

在SchedulerBase初始化时生成ExecutionGraph后,之后便基于ExecutionGraph调度,而调度基类SchedulerBase默认实现为DefaultScheduler,会继续通过DefaultScheduler#startSchedulingInternal调度作业,此时会将作业(ExecutionGraph)的状态从CREATED状态变更为RUNNING状态,此时在Flink web界面查看任务的状态便已经为RUNNING,但注意此时作业(各顶点)实际并未开始调度,顶点还是处于CREATED状态,任作业状态与顶点状态不完全相关联,有其各自的演化生命周期,具体可参考Flink作业调度[2];然后根据不同的策略EagerSchedulingStrategy(主要用于流式作业,所有顶点(ExecutionVertex)同时开始调度)和LazyFromSourcesSchedulingStrategy(主要用于批作业,从Source开始开始调度,其他顶点延迟调度)调度。

当提交流式作业时,会有如下代码调用路径:

  • EagerSchedulingStrategy#startScheduling
  • EagerSchedulingStrategy#allocateSlotsAndDeploy,在部署之前会根据待部署的ExecutionVertex生成对应的ExecutionVertexDeploymentOption,然后调用DefaultScheduler#allocateSlotsAndDeploy开始部署。同样,在部署之前也需要进行一些前置校验(ExecutionVertex对应的Execution的状态必须为CREATED),接着将待部署的ExecutionVertex对应的Execution状态变更为SCHEDULED,然后开始为ExecutionVertex分配Slot。会有如下的调用代码路径:
  • DefaultScheduler#allocateSlots(该过程会ExecutionVertex转化为ExecutionVertexSchedulingRequirements,会封装包含一些location信息、sharing信息、资源信息等)
  • DefaultExecutionSlotAllocator#allocateSlotsFor,该方法会开始逐一异步部署各ExecutionVertex,部署也是根据不同的Slot提供策略来分配,接着会经过如下代码调用路径层层转发,SlotProviderStrategy#allocateSlot -> SlotProvider#allocateSlot(SlotProvider默认实现为SchedulerImpl) -> SchedulerImpl#allocateSlotInternal -> SchedulerImpl#internalAllocateSlot(该方法会根据vertex是否共享slot来分配singleSlot/SharedSlot),以singleSlot为例说明。
    在分配slot时,首先会在JobMaster中SlotPool中进行分配,具体是先SlotPool中获取所有slot,然后尝试选择一个最合适的slot进行分配,这里的选择有两种策略,即按照位置优先和按照之前已分配的slot优先;若从SlotPool无法分配,则通过RPC请求向ResourceManager请求slot,若此时并未连接上ResourceManager,则会将请求缓存起来,待连接上ResourceManager后再申请。

当ResourceManager收到申请slot请求时,若发现该JobManager未注册,则直接抛出异常;否则将请求转发给SlotManager处理,SlotManager中维护了集群所有空闲的slot(TaskManager会向ResourceManager上报自己的信息,在ResourceManager中由SlotManager保存Slot和TaskManager对应关系),并从其中找出符合条件的slot,然后向TaskManager发送RPC请求申请对应的slot。

等待所有的slot申请完成后,然后会将ExecutionVertex对应的Execution分配给对应的Slot,即从Slot中分配对应的资源给Execution,完成分配后可开始部署作业。
部署作业代码调用路径如下:DefaultScheduler#waitForAllSlotsAndDeploy -> DefaultScheduler#deployAll -> DefaultScheduler#deployOrHandleError -> DefaultScheduler#deployTaskSafe -> DefaultExecutionVertexOperations#deploy -> ExecutionVertex#deploy -> Execution#deploy(每次调度ExecutionVertex,都会有一个Execute,在此阶段会将Execution的状态变更为DEPLOYING状态,并且为该ExecutionVertex生成对应的部署描述信息,然后从对应的slot中获取对应的TaskManagerGateway,以便向对应的TaskManager提交Task) -> RpcTaskManagerGateway#submitTask(此时便将Task通过RPC提交给了TaskManager)。

TaskManager(TaskExecutor)在接收到提交Task的请求后,会经过一些初始化(如从BlobServer拉取文件,反序列化作业和Task信息、LibaryCacheManager等),然后这些初始化的信息会用于生成Task(Runnable对象),然后启动该Task,其代码调用路径如下 Task#startTaskThread(启动Task线程)-> Task#run(将ExecutionVertex状态变更为RUNNING状态,此时在FLINK web前台查看顶点状态会变更为RUNNING状态,另外还会生成了一个AbstractInvokable对象,该对象是FLINK衔接执行用户代码的关键,而后会经过如下调用AbstractInvokable#invoke(AbstractInvokable有几个关键的子类实现, BatchTask/BoundedStreamTask/DataSinkTask/DataSourceTask/StreamTask/SourceStreamTask。对于streaming类型的Source,会调用StreamTask#invoke)-> StreamTask#invoke -> StreamTask#beforeInvoke -> StreamTask#initializeStateAndOpen(初始化状态和进行初始化,这里会调用用户的open方法(如自定义实现的source))-> StreamTask#runMailboxLoop,便开始处理Source端消费的数据,并流入下游算子处理。
至此作业从提交到资源分配及调度运行整体流程就已经分析完毕,对于流式作业而言,正常情况下其会一直运行,不会结束。

3. 总结

对于作业的运行,会先提交至Dispatcher,由Dispatcher拉起JobManagerRunner,在JobManagerRunner成为Leader后,便开始处理作业,首先会根据JobGraph生成对应的ExecutionGraph,然后开始调度,作业的状态首先会变更为RUNNING,然后对各ExecutionVertex申请slot,申请slot会涉及JM与RM、TM之间的通信,当在TM上分配完slot后,便可将Task提交至TaskManager,然后TaskManager会为每个提交的Task生成一个单独的线程处理。

参考

  1. https://www.infoq.cn/article/RWTM9o0SHHV3Xr8o8giT
  2. https://flink.sojb.cn/internals/job_scheduling.html

【Flink】Flink作业调度流程分析的更多相关文章

  1. 3.Flink实时项目之流程分析及环境搭建

    1. 流程分析 前面已经将日志数据(ods_base_log)及业务数据(ods_base_db_m)发送到kafka,作为ods层,接下来要做的就是通过flink消费kafka 的ods数据,进行简 ...

  2. hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析

    hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析 Spark是一种快速.通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集 ...

  3. flink checkpoint 源码分析 (二)

    转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8260370.html flink checkpoint 源码分析 (一)一文主要讲述了在JobMan ...

  4. flink1.10版local模式提交job流程分析

    1.WordCount程序实例 2.本地监听9000端口后测试结果 3.job提交流程 4.local模式执行StreamGraph任务 5.流程分析 flink job提交流程个人理解可以大致分为定 ...

  5. 大数据计算引擎之Flink Flink CEP复杂事件编程

    原文地址: 大数据计算引擎之Flink Flink CEP复杂事件编程 复杂事件编程(CEP)是一种基于流处理的技术,将系统数据看作不同类型的事件,通过分析事件之间的关系,建立不同的时事件系序列库,并 ...

  6. 8、Struts2 运行流程分析

    1.流程分析: 请求发送给 StrutsPrepareAndExecuteFilter StrutsPrepareAndExecuteFilter 询问 ActionMapper: 该请求是否是一个 ...

  7. freeswitch呼叫流程分析

    今天翻文档时发现之前整理的关于freeswitch呼叫相关的内容,写成博文分享出来也方便我以后查阅. 整体结构图 FreeswitchCore 模块加载过程 freeswitch主程序初始化时会从mo ...

  8. u-boot 流程分析

    u-boot 介绍: 对于计算机来说 , 从一开始上机通电是无法直接启动操作系统的 , 这中间需要一个引导过程 , 嵌入式Linux系统同样离不开引导程序 ,  这个启动程序就叫启动加载程序(Boot ...

  9. thttpd和cgilua安装与运行流程分析

    安装 参考如下博文安装thttpd软件 http://blog.csdn.net/21aspnet/article/details/7045845 http://blog.csdn.net/drago ...

随机推荐

  1. H3C开启Ssh

    [H3C]ssh server enable                       //开启SSH服务 [H3C]user-interface vty 0 4 [H3C-ui-vty0-4]au ...

  2. C# 匹配可空变量

    在 C# 7.0 的时候提供更好用的模式匹配方法,支持通过 is 直接转换对应的类,但是如果是尝试转换可空的对象,那么将会提示无法编译,或转换失败 在 C# 7.0 的 is 转换是十分好用的功能,例 ...

  3. CSS---文本相关属性

    text-transform 检索或设置对象中的文本的大小写. 属性值 none:无转换 capitalize:将每个单词的第一个字母转换成大写 uppercase:将每个单词转换成大写 lowerc ...

  4. Python进程池使用

    from multiprocessing import Pool from time import sleep def Foo(i): sleep(1) print(i) if __name__ == ...

  5. .NETCore3.1中的Json互操作最全解读-收藏级

    前言 本文比较长,我建议大家先点赞.收藏后慢慢阅读,点赞再看,形成习惯! 我很高兴,.NETCore终于来到了3.1LTS版本,并且将支持3年,我们也准备让部分业务迁移到3.1上面,不过很快我们就遇到 ...

  6. Rust入坑指南:亡羊补牢

    如果你已经开始学习Rust,相信你已经体会过Rust编译器的强大.它可以帮助你避免程序中的大部分错误,但是编译器也不是万能的,如果程序写的不恰当,还是会发生错误,让程序崩溃.所以今天我们就来聊一聊Ru ...

  7. 如何使用JMX来管理程序?

    什么是JMX JMX,全称Java Management Extensions,用于我们管理和监控java应用程序.JMX有以下用途: 监控应用程序的运行状态和相关统计信息. 修改应用程序的配置(无需 ...

  8. 【一起学源码-微服务】Nexflix Eureka 源码十一:EurekaServer自我保护机制竟然有这么多Bug?

    前言 前情回顾 上一讲主要讲了服务下线,已经注册中心自动感知宕机的服务. 其实上一讲已经包含了很多EurekaServer自我保护的代码,其中还发现了1.7.x(1.9.x)包含的一些bug,但这些问 ...

  9. 洛谷$P1935$ [国家集训队]圈地计划 网络流

    正解:最小割 解题报告: 传送门 就文理分科模型嘛$QwQ$?所以就,跑个最小割呗,然后就做完辣?仔细想想细节发现并麻油那么简单嗷$QwQ$ 先考虑如果没有这个$k\cdot C_{i,j}$的贡献就 ...

  10. 洛谷P1035 级数求和 题解 简单模拟

    题目链接:https://www.luogu.com.cn/problem/P1035 题目描述 已知:\(S_n= 1+1/2+1/3+-+1/n\).显然对于任意一个整数 \(k\),当 \(n\ ...