一、介绍

二、编程

练习一(K最近邻算法在单分类任务的应用):

import numpy as np    #导入科学计算包
import matplotlib.pyplot as plt    #导入画图工具
from sklearn.datasets import make_blobs    #导入数据集生成器
from sklearn.neighbors import KNeighborsClassifier    #导入KNN分类器(KNN回归树的类)
from sklearn.model_selection import train_test_split    #导入数据集拆分工具

data = make_blobs(n_samples=200, centers=2, random_state=8)    #生成样本数为200,分类为2的数据集,随机种子数为8
X, y = data
clf = KNeighborsClassifier()    #导入KNN分类器函数
clf.fit(X,y)    #训练X和y数据进行训练
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02),
np.arange(y_min, y_max, .02))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.spring, edgecolors='k')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()

练习二(K最近邻算法处理多元分类):

data2 = make_blobs(n_samples=500, centers=5, random_state=8)    #生成样本数为500,分数为5的数据集
X2, y2 = data2
clf = KNeighborsClassifier()
clf.fit(X2,y2)
x_min, x_max = X2[:, 0].min() - 1, X2[:, 0].max() + 1
y_min, y_max = X2[:, 1].min() - 1, X2[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02),
np.arange(y_min, y_max, .02))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)
plt.scatter(X2[:, 0], X2[:, 1], c=y2, cmap=plt.cm.spring, edgecolors='k')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()
print('模型正确率: {:.2f}'.format(clf.score(X2,y2)))

练习三(K最近邻算法用于回归分析):

from sklearn.datasets import make_regression    #导入数据集生成器
from sklearn.neighbors import KNeighborsRegressor    

X, y = make_regression(n_features=1,n_informative=1, noise=50,random_state=8)    #生成特征数量为1,噪音为50的数据集
reg = KNeighborsRegressor(n_neighbors=2)
reg.fit(X,y)
z = np.linspace(-3,3,200).reshape(-1,1)
plt.scatter(X,y,c='orange',edgecolor='k')
plt.plot(z, reg.predict(z),c='k',linewidth=3)
plt.show()
print('模型评分: {:.2f}'.format(reg.score(X,y)))

练习四(K最近邻算法项目用于酒的分类):

from sklearn.datasets import load_wine    #导入数据模块
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split    #导入数据集拆分工具

wine_dataset = load_wine()    
knn = KNeighborsClassifier(n_neighbors=1)
X_train, X_test, y_train, y_test = train_test_split(wine_dataset['data'], wine_dataset['target'], random_state=0)    #将数据集拆分为训练集和测试集
knn.fit(X_train, y_train)
print('测试数据得分: {:.2f}'.format(knn.score(X_test, y_test)))
print('####################################')

import numpy as np
X_new = np.array([[13.2,2.77,2.51,18.5,96.6,1.04,2.55,0.57,1.47,6.2,1.05,3.33,820]])
prediction = knn.predict(X_new)
print('预测新红酒的分类为: {}'.format(wine_dataset['target_names'][prediction]))

												

机器学习-K最近邻算法的更多相关文章

  1. 机器学习【一】K最近邻算法

    K最近邻算法 KNN 基本原理 离哪个类近,就属于该类   [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...

  2. 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)

    K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...

  3. 《算法图解》——第十章 K最近邻算法

    第十章    K最近邻算法 1 K最近邻(k-nearest neighbours,KNN)——水果分类 2 创建推荐系统 利用相似的用户相距较近,但如何确定两位用户的相似程度呢? ①特征抽取 对水果 ...

  4. [笔记]《算法图解》第十章 K最近邻算法

    K最近邻算法 简称KNN,计算与周边邻居的距离的算法,用于创建分类系统.机器学习等. 算法思路:首先特征化(量化) 然后在象限中选取目标点,然后通过目标点与其n个邻居的比较,得出目标的特征. 余弦相似 ...

  5. PCB 加投率计算实现基本原理--K最近邻算法(KNN)

    PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...

  6. K最近邻算法项目实战

    这里我们用酒的分类来进行实战练习 下面来代码 1.把酒的数据集载入到项目中 from sklearn.datasets import load_wine #从sklearn的datasets模块载入数 ...

  7. 秒懂机器学习---k临近算法(KNN)

    秒懂机器学习---k临近算法(KNN) 一.总结 一句话总结: 弄懂原理,然后要运行实例,然后多解决问题,然后想出优化,分析优缺点,才算真的懂 1.KNN(K-Nearest Neighbor)算法的 ...

  8. 图说十大数据挖掘算法(一)K最近邻算法

    如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:“菠萝”!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图 ...

  9. 12、K最近邻算法(KNN算法)

    一.如何创建推荐系统? 找到与用户相似的其他用户,然后把其他用户喜欢的东西推荐给用户.这就是K最近邻算法的分类作用. 二.抽取特征 推荐系统最重要的工作是:将用户的特征抽取出来并转化为度量的数字,然后 ...

随机推荐

  1. jquery超级简单的后台系统自适应框架

    系统后台自适应简单框架 <!DOCTYPE HTML> <html lang="zh-CN"> <head> <meta http-equ ...

  2. SSH框架 通用 错误(404,500等)返回页面设置

    在web.xml里面加入

  3. 基于Nutch+Hadoop+Hbase+ElasticSearch的网络爬虫及搜索引擎

    基于Nutch+Hadoop+Hbase+ElasticSearch的网络爬虫及搜索引擎 网络爬虫架构在Nutch+Hadoop之上,是一个典型的分布式离线批量处理架构,有非常优异的吞吐量和抓取性能并 ...

  4. PHP每日复习任务与复习记录

    [2019-10-10 16:05:00] PHP7之Trait详解 https://blog.csdn.net/qq_35255775/article/details/80610586 PHP中的魔 ...

  5. 14.python类型总结,集合,字符串格式化

    借鉴:https://www.cnblogs.com/linhaifeng/articles/5935801.html  https://www.cnblogs.com/wupeiqi/article ...

  6. 第二阶段:2.商业需求文档MRD:5.MRD-Roadmap及规划

    产品路线图可以用泳道图来实现.将之前做过的泳道图的角色换为阶段即可. 可以以月为单位.左边就是一些产品的功能. 基础功能,有的功能会跨月甚至夸功能模块.比如图中的会员等级. 通过线段来联系各个功能与先 ...

  7. Kubernetes从私有镜像仓库中拉取镜像

    当我们尝试从私有仓库中拉取镜像时,可能会收到这样提示:requested access to the resource is denied Error response from daemon: pu ...

  8. redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?

    redis 和 memcached 有啥区别? redis 支持复杂的数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作.如果需要缓存能够支持更复杂的结构 ...

  9. 008 Ceph集群数据同步

    介绍,目前已经创建一个名为ceph的Ceph集群,和一个backup(单节点)Ceph集群,是的这两个集群的数据可以同步,做备份恢复功能 一.配置集群的相互访问 1.1 安装rbd mirror rb ...

  10. acwing 1250. 格子游戏 并查集

    地址 https://www.acwing.com/problem/content/1252/ Alice和Bob玩了一个古老的游戏:首先画一个 n×nn×n 的点阵(下图 n=3n=3 ). 接着, ...