吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用
import numpy as np from matplotlib import pyplot as plt
from sklearn import neighbors, datasets
from matplotlib.colors import ListedColormap
from sklearn.neural_network import MLPClassifier ## 加载数据集
np.random.seed(0)
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
# 使用前两个特征,方便绘图
X=iris.data[:,0:2]
# 标记值
Y=iris.target
data=np.hstack((X,Y.reshape(Y.size,1)))
# 混洗数据。因为默认的iris 数据集:前50个数据是类别0,中间50个数据是类别1,末尾50个数据是类别2.混洗将打乱这个顺序
np.random.shuffle(data)
X=data[:,:-1]
Y=data[:,-1]
train_x=X[:-30]
train_y=Y[:-30]
# 最后30个样本作为测试集
test_x=X[-30:]
test_y=Y[-30:] def plot_classifier_predict_meshgrid(ax,clf,x_min,x_max,y_min,y_max):
'''
绘制 MLPClassifier 的分类结果 :param ax: Axes 实例,用于绘图
:param clf: MLPClassifier 实例
:param x_min: 第一维特征的最小值
:param x_max: 第一维特征的最大值
:param y_min: 第二维特征的最小值
:param y_max: 第二维特征的最大值
:return: None
'''
plot_step = 0.02 # 步长
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),np.arange(y_min, y_max, plot_step))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘图
ax.contourf(xx, yy, Z, cmap=plt.cm.Paired) def plot_samples(ax,x,y):
'''
绘制二维数据集 :param ax: Axes 实例,用于绘图
:param x: 第一维特征
:param y: 第二维特征
:return: None
'''
n_classes = 3
# 颜色数组。每个类别的样本使用一种颜色
plot_colors = "bry"
for i, color in zip(range(n_classes), plot_colors):
idx = np.where(y == i)
# 绘图
ax.scatter(x[idx, 0], x[idx, 1], c=color,label=iris.target_names[i], cmap=plt.cm.Paired) def mlpclassifier_iris():
'''
使用 MLPClassifier 预测调整后的 iris 数据集
'''
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
classifier=MLPClassifier(activation='logistic',max_iter=10000,hidden_layer_sizes=(30,))
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("train score:%f;test score:%f"%(train_score,test_score))
plt.show() mlpclassifier_iris()
def mlpclassifier_iris_hidden_layer_sizes():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 hidden_layer_sizes 的影响 :return: None
'''
fig=plt.figure()
# 候选的 hidden_layer_sizes 参数值组成的数组
hidden_layer_sizes=[(10,),(30,),(100,),(5,5),(10,10),(30,30)]
for itx,size in enumerate(hidden_layer_sizes):
ax=fig.add_subplot(2,3,itx+1)
classifier=MLPClassifier(activation='logistic',max_iter=10000,hidden_layer_sizes=size)
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("layer_size:%s;train score:%f;test score:%f"%(size,train_score,test_score))
plt.show() mlpclassifier_iris_hidden_layer_sizes()
def mlpclassifier_iris_ativations():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 activation 的影响
'''
fig=plt.figure()
# 候选的激活函数字符串组成的列表
ativations=["logistic","tanh","relu"]
for itx,act in enumerate(ativations):
ax=fig.add_subplot(1,3,itx+1)
classifier=MLPClassifier(activation=act,max_iter=10000,hidden_layer_sizes=(30,))
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("activation:%s;train score:%f;test score:%f"%(act,train_score,test_score))
plt.show() mlpclassifier_iris_ativations()
def mlpclassifier_iris_algorithms():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的 algorithm 的影响 :return: None
'''
fig=plt.figure()
algorithms=["lbfgs","sgd","adam"] # 候选的算法字符串组成的列表
for itx,algo in enumerate(algorithms):
ax=fig.add_subplot(1,3,itx+1)
classifier=MLPClassifier(activation="tanh",max_iter=10000,hidden_layer_sizes=(30,),solver=algo)
classifier.fit(train_x,train_y)
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("algorithm:%s;train score:%f;test score:%f"%(algo,train_score,test_score))
plt.show() mlpclassifier_iris_algorithms()
def mlpclassifier_iris_eta():
'''
使用 MLPClassifier 预测调整后的 iris 数据集。考察不同的学习率的影响
'''
fig=plt.figure()
etas=[0.1,0.01,0.001,0.0001] # 候选的学习率值组成的列表
for itx,eta in enumerate(etas):
ax=fig.add_subplot(2,2,itx+1)
classifier=MLPClassifier(activation="tanh",max_iter=1000000,
hidden_layer_sizes=(30,),solver='sgd',learning_rate_init=eta)
classifier.fit(train_x,train_y)
iter_num=classifier.n_iter_
train_score=classifier.score(train_x,train_y)
test_score=classifier.score(test_x,test_y)
x_min, x_max = train_x[:, 0].min() - 1, train_x[:, 0].max() + 2
y_min, y_max = train_x[:, 1].min() - 1, train_x[:, 1].max() + 2
plot_classifier_predict_meshgrid(ax,classifier,x_min,x_max,y_min,y_max)
plot_samples(ax,train_x,train_y)
ax.legend(loc='best')
ax.set_xlabel(iris.feature_names[0])
ax.set_ylabel(iris.feature_names[1])
ax.set_title("eta:%f;train score:%f;test score:%f;iter_num:%d"%(eta,train_score,test_score,iter_num))
plt.show() mlpclassifier_iris_eta()
吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用的更多相关文章
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- 吴裕雄 python 机器学习——数据预处理字典学习模型
from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示
#K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
随机推荐
- 熵权法(the Entropy Weight Method)以及MATLAB实现
按照信息论基本原理的解释,信息是系统有序程度的一个度量,熵是系统无序程度的一个度量:如果指标的信息熵越小,该指标提供的信息量越小,在综合评价中所起作用理当越小,权重就应该越低.因此,可利用信息熵这个工 ...
- windows10(家庭版)+ laradock 安装踩坑记一记
Docker 安装: 首先我们需要在系统安装 Docker 的免费社区版,官方提供 Windows.Mac 及 Linux 等版本下载:下载地址.下载操作系统对应版本后,按照引导流程安装,最后打开 D ...
- vue页面加载前显示{{代码}}的原因及解决办法
进入正题,简单说说自己对html中出现{{}}的原因及解决办法: 这样写的话,就会出现{{}}一闪的情况: 原因:html的加载顺序: 解析html结构 -> 加载外部脚本和样式表文件 -> ...
- 在macOS 上添加 JAVA_HOME 环境变量
If you are planing to develop Java Apps on your Mac, you may have to set $JAVA_HOME environment vari ...
- How to read a paper efficiently - by prof. Pete carr
DON'T DO THAT: read the article from the beginning to end; it's a waste of time! READ A PAPER IN TWO ...
- redis五大数据类型以及常用操作命令
Redis的五大数据类型 String(字符串) string是redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value.string类型是二进制安全的.意 ...
- 363. 矩形区域不超过 K 的最大数值和(利用前缀和转化为最大子序和问题)
题目: 链接:https://leetcode-cn.com/problems/max-sum-of-rectangle-no-larger-than-k/ 给定一个非空二维矩阵 matrix 和一个 ...
- Xlrd模块读取Excel文件数据
Xlrd模块使用 excel文件样例:
- Cleaning Data in R
目录 R 中清洗数据 常见三种查看数据的函数 Exploring raw data 使用dplyr包里面的glimpse函数查看数据结构 \(提取指定元素 ```{r} # Histogram of ...
- 巨杉TechDay回顾 | WARNING!您参加的数据库沙龙热度已爆表……
自从2008年“大数据”这一概念被首次提出以来,在过去这10年中,几乎各行各业都或多或少受到了这一概念的影响.与此同时,在AI.云计算.物联网.区块链等新兴技术快速发展的今天,数据库己经成为了决定所有 ...